Head and neck cancers are among the deadliest cancers, ranked sixth globally in rates of high mortality and poor patient prognoses. The prevalence of head and neck squamous cell carcinoma (HNSCC) is associated with smoking and excessive alcohol consumption. Despite several advances in diagnostic and interventional methods, the morbidity of subjects with HNSCC has remained unchanged over the last 30 years. Epigenetic alterations, such as DNA hypermethylation, are commonly associated with several cancers, including HNSCC. Thus, epigenetic changes are considered promising therapeutic targets for chemoprevention. Here, we investigated the effect of EGCG on DNA hypermethylation and the growth of HNSCC. First, we assessed the expression levels of global DNA methylation in HNSCC cells (FaDu and SCC-1) and observed enhanced methylation levels compared with normal human bronchial epithelial cells (NHBE). Treatment of EGCG to HNSCC cells significantly inhibited global DNA hypermethylation by up to 70–80% after 6 days. Inhibition of DNA hypermethylation in HNSCC cells was confirmed by the conversion of 5-methylcytosine (5-mc) into 5-hydroxy methylcytosine (5hmC). DNA methyltransferases regulate DNA methylation. Next, we checked the effect of EGCG on the expression levels of DNA methyltransferases (DNMTs) and DNMT activity. Treatment of EGCG to HNSCC cells significantly reduced DNMT activity to 60% in SCC-1 and 80% in FaDu cells. The protein levels of DNMT3a and DNMT3b were downregulated in both cell lines after EGCG treatment. EGCG treatment to HNSCC cells reactivated tumor suppressors and caused decreased cell proliferation. Our in vivo study demonstrated that administration of EGCG (0.5%, w/w) as a supplement within an AIN76A diet resulted in inhibition of tumor growth in FaDu xenografts in nude mice (80%; p < 0.01) compared with non-EGCG-treated controls. The growth inhibitory effect of dietary EGCG on the HNSCC xenograft tumors was associated with the inhibition of DNMTs and reactivation of silenced tumor suppressors. Together, our study provides evidence that EGCG acts as a DNA demethylating agent and can reactivate epigenetically silenced tumor suppressors to inhibit the growth of HNSCC cells.
We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits—from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.
Diffuse correlation spectroscopy (DCS) is an optical modality used to measure an index of blood flow in biological tissue. This blood flow index depends on both the red blood cell flow rate and density (i.e., hematocrit), although the functional form of hematocrit dependence is not well delineated. Herein, we develop and validate a novel tissue-simulating phantom containing hundreds of microchannels to investigate the influence of hematocrit on blood flow index. For a fixed flow rate, we demonstrate a significant inverse relationship between hematocrit and blood flow index that must be accounted for to accurately estimate blood flow under anemic conditions.
by
Charlotte Andrieu-Soler;
Mounia Halhal;
Jeffrey Boatright;
Staci A. Padove;
John Nickerson;
Eva Stodulkova;
Rachael E. Stewart;
Vincent Ciavatta;
Marc Doat;
Jean-Claude Jeanny;
Therese de Bizemont;
Florian Sennlaub;
Yves Courtois;
Francine Behar-Cohen
Purpose: The aim of this study was to test whether oligonucleotide-targeted gene repair can correct the point mutation in genomic DNA of PDE6brd1 (rd1) mouse retinas in vivo. Methods: Oligonucleotides (ODNs) of 25 nucleotide length and complementary to genomic sequence subsuming the rd1 point mutation in the gene encoding the β-subunit of rod photoreceptor cGMP-phosphodiesterase (β-PDE), were synthesized with a wild type nucleotide base at the rd1 point mutation position. Control ODNs contained the same nucleotide bases as the wild type ODNs but with varying degrees of sequence mismatch. We previously developed a repeatable and relatively non-invasive technique to enhance ODN delivery to photoreceptor nuclei using transpalpebral iontophoresis prior to intravitreal ODN injection. Three such treatments were performed on C3H/ henJ (rd1) mouse pups before postnatal day (PN) 9. Treatment outcomes were evaluated at PN28 or PN33, when retinal degeneration was nearly complete in the untreated rd1 mice. The effect of treatment on photoreceptor survival was evaluated by counting the number of nuclei of photoreceptor cells and by assessing rhodopsin immunohistochemistry on flat-mount retinas and sections. Gene repair in the retina was quantified by allele-specific real time PCR and by detection of β-PDE-immunoreactive photoreceptors. Confirmatory experiments were conducted using independent rd1 colonies in separate laboratories. These experiments had an additional negative control ODN that contained the rd1 mutant nucleotide base at the rd1 point mutation site such that the sole difference between treatment with wild type and control ODN was the single base at the rd1 point mutation site. Results: Iontophoresis enhanced the penetration of intravitreally injected ODNs in all retinal layers. Using this delivery technique, significant survival of photoreceptors was observed in retinas from eyes treated with wild type ODNs but not control ODNs as demonstrated by cell counting and rhodopsin immunoreactivity at PN28. β-PDE immunoreactivity was present in retinas from eyes treated with wild type ODN but not from those treated with control ODNs. Gene correction demonstrated by allele-specific real time PCR and by counts of β-PDE-immunoreactive cells was estimated at 0.2%. Independent confirmatory experiments showed that retinas from eyes treated with wild type ODN contained many more rhodopsin immunoreactive cells compared to retinas treated with control (rd1 sequence) ODN, even when harvested at PN33. Conclusions: Short ODNs can be delivered with repeatable efficiency to mouse photoreceptor cells in vivo using a combination of intravitreal injection and iontophoresis. Delivery of therapeutic ODNs to rd1 mouse eyes resulted in genomic DNA conversion from mutant to wild type sequence, low but observable β-PDE immunoreactivity, and preservation of rhodopsin immunopositive cells in the outer nuclear layer, suggesting that ODN-directed gene repair occurred and preserved rod photoreceptor cells. Effects were not seen in eyes treated with buffer or with ODNs having the rd1 mutant sequence, a definitive control for this therapeutic approach. Importantly, critical experiments were confirmed in two laboratories by several different researchers using independent mouse colonies and ODN preparations from separate sources. These findings suggest that targeted gene repair can be achieved in the retina following enhanced ODN delivery.
Purpose: We analyze melanin structure and biochemical composition in conjunctival melanocytic lesions using pump-probe microscopy to assess the potential for this method to assist in melanoma diagnosis. Methods: Pump-probe microscopy interrogates transient excited-state photodynamic properties of absorbing molecules, which yields highly specific molecular information with subcellular spatial resolution. This method is applied to analyze melanin in 39 unstained, thin biopsy specimens of melanocytic conjunctival lesions. Quantitative features of the biochemical composition and structure of melanin in histopathologic specimens are assessed using a geometric representation of principal component analysis (PCA) and principles of mathematical morphology. Diagnostic power is determined using a feature selection algorithm combined with cross validation. Results: Conjunctival melanomas show higher biochemical heterogeneity and different overall biochemical composition than primary acquired melanosis of the conjunctiva (PAM) without severe atypia. The molecular signatures of PAMs with severe atypia more closely resemble melanomas than other types of PAMs. Pigment organization in the tissue becomes more disorganized as diagnosis of the lesions worsen, but nevi are more inconsistent biochemically and structurally than other lesions. Relatively high sensitivity (SE) and specificity (SP) is achieved for differentiating between various melanocytic lesions, particularly PAMs without severe atypia and melanomas (SE = 89%; SP = 87%). Conclusions: Pump-probe microscopy is a powerful tool that can identify quantitative, phenotypic differences between various types of conjunctival melanocytic lesions. Translational Relevance: This study further validates the use of pump-probe microscopy as a potential diagnostic aid for histopathologic evaluation of conjunctival melanocytic lesions.
by
Shakeel A. Sheikh;
Robert A. Sisk;
Cara R. Schiavon;
Yar M. Waryah;
Muhammad A. Usmani;
David H. Steel;
John A. Sayer;
Ashok K. Narsani;
Robert B. Hufnagel;
Saima Riazuddin;
Richard Kahn;
Ali M. Waryah;
Zubair M. Ahmed
PURPOSE:
Cone rod dystrophy (CRD) is a group of inherited retinopathies characterized by the loss of cone and rod photoreceptor cells, which results in poor vision. This study aims to clinically and genetically characterize the segregating CRD phenotype in two large, consanguineous Pakistani families.
METHODS:
Funduscopy, optical coherence tomography (OCT), electroretinography (ERG), color vision, and visual acuity assessments were performed to evaluate the retinal structure and function of the affected individuals. Exome sequencing was performed to identify the genetic cause of CRD. Furthermore, the mutation’s effect was evaluated using purified, bacterially expressed ADP-ribosylation factor-like protein 3 (ARL3) and mammalian cells.
RESULTS:
Fundus photography and OCT imaging demonstrated features that were consistent with CRD, including bull’s eye macular lesions, macular atrophy, and central photoreceptor thinning. ERG analysis demonstrated moderate to severe reduction primarily of photopic responses in all affected individuals, and scotopic responses show reduction in two affected individuals. The exome sequencing revealed a novel homozygous variant (c.296G>T) in ARL3, which is predicted to substitute an evolutionarily conserved arginine with isoleucine within the encoded protein GTP-binding domain (R99I). The functional studies on the bacterial and heterologous mammalian cells revealed that the arginine at position 99 is essential for the stability of ARL3.
CONCLUSIONS:
Our study uncovers an additional CRD gene and assigns the CRD phenotype to a variant of ARL3. The results imply that cargo transportation in photoreceptors as mediated by the ARL3 pathway is essential for cone and rod cell survival and vision in humans.
Purpose: The goal of the present study is to provide an independent assessment of the retinal transcriptome signatures of C57BL/6J (B6) and DBA/2J (D2) mice, and to enhance existing microarray data sets for accurately defining the allelic differences in the BXD recombinant inbred strains. Methods: Retinas from B6 and D2 mice (three of each) were used for the RNA sequencing (RNA-seq) analysis. Transcriptome features were examined for both strains. Differentially expressed genes between the two strains were identified, and bioinformatic analysis was performed to analyze the transcriptome differences between the B6 and D2 strains, including Gene Ontology (GO) analysis, Phenotype and Reactome enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The RNA-seq data were then directly compared with one of the microarray data sets (Department of Defense [DoD] Retina Normal Affy MoGene 2.0 ST RMA Gene Level Microarray Database) hosted on GeneNetwork. Results: RNA-seq provided an in-depth analysis of the transcriptome of the B6 and D2 retinas with a total of more than 30,000,000 reads per sample. More than 70% of the reads were uniquely mapped, resulting in a total of 18,100 gene counts for all six samples. A total of 1,665 genes were differentially expressed, with 858 of these more highly expressed in the B6 retinas and 807 more highly expressed in the D2 retinas. Several molecular pathways were differentially active between the two strains, including the retinoic acid metabolic process, endoplasmic reticulum lumen, extracellular matrix (ECM) organization, and the PI3K-Akt signaling pathway. The most enriched KEGG pathways were the pentose and glucuronate interconversions pathway, the cytochrome P450 pathway, the protein digestion and absorption pathway, and the ECM-receptor interaction pathway. Each of these pathways had a more than fourfold enrichment. The DoD Normal Retina Microarray Database provided expression profiling for 26,191 annotated transcripts for B6 mouse, D2 mouse, and 53 BXD strains. A total of 13,793 genes in this microarray data set were comparable to the RNA-seq data set. For the B6 and D2 retinas, the RNA-seq data and the microarray data were highly correlated with each other (Pearson’s r=0.780 for the B6 mice and 0.784 for D2 mice). These results suggest that the microarray data set can reliably detect differentially expressed genes between the B6 and D2 retinas, with an overall accuracy of 91.1%. Examples of true positive and false positive genes are provided. Conclusions: Retinal transcriptome features of B6 and D2 mouse strains provide a useful reference for a better understanding of the mouse retina. Generally, the microarray database presented on GeneNetwork shows good agreement with the RNA-seq data, but we note that any allelic difference between B6 and D2 mice should be verified with the latter.
by
Richard A. Stone;
Wenjie Wei;
Shanta Sarfare;
Brendan McGeehan;
K. Cameron Engelhart;
Tejvir S. Khurana;
Maureen G. Maguire;
Paul Iuvone;
Debora L. Nickla
Purpose
Stimulated by evidence implicating diurnal/circadian rhythms and light in refractive development, we studied the expression over 24 hours of selected clock and circadian rhythm–related genes in retina/retinal pigment epithelium (RPE) and choroid of experimental ametropias in chicks.
Methods
Newly hatched chicks, entrained to a 12-hour light/dark cycle for 12 to 14 days, either experienced nonrestricted vision OU (i.e., in both eyes) or received an image-blurring diffuser or a minus 10-diopter (D) or a plus 10-D defocusing lens over one eye. Starting 1 day later and at 4-hour intervals for 24 hours, the retina/RPE and choroid were separately dissected. Without pooling, total RNA was extracted, converted to cDNA, and assayed by quantitative PCR for the expression of the following genes: Opn4m, Clock, Npas2, Per3, Cry1, Arntl, and Mtnr1a.
Results
The expression of each gene in retina/RPE and in choroid of eyes with nonrestricted vision OU varied over 24 hours, with equal levels OU for most genes and times. Altered visual input influenced gene expression in complex patterns that varied by gene, visual input, time, and eye, affecting experimental eyes with altered vision and also contralateral eyes with nonrestricted vision.
Discussion
Altering visual input in ways known to induce ametropias alters the retinal/RPE and choroidal expression of circadian rhythm–related genes, further linking circadian biology with eye growth regulation. While further investigations are needed, studying circadian processes may help understand refractive mechanisms and the increasing myopia prevalence in contemporary societies where lighting patterns can desynchronize endogenous rhythms from the natural environmental light/dark cycle.
Crystallins in the retina may serve a chaperone-like protective function. In this study we measured mRNA levels for alpha-, beta- and gamma-crystallins in rat retinas following treatment with potentially damaging levels of light. We also determined crystallin protein patterns in photoreceptor cell rod outer segments (ROSs) isolated from rats exposed to intense light. Weanling albino rats were maintained in a dim cyclic light environment or in darkness for 40 days. At P60 animals were treated with intense visible light, for as long as 8 h, beginning at various times of the day or night. Retinas were excised immediately after light treatment and used for quantitative RT-PCR, or to prepare ROSs for western analysis. Some eyes were frozen in OCT for crystallin immunohistochemistry. Intense light exposure led to increases in mRNA expression for all retinal crystallins and to changes in ROS crystallin immunoreactivity. These light-induced changes were found to depend on the time of day that exposure started, duration of light treatment and previous light rearing history. We suggest that crystallin synthesis in retina exhibits a dependence on both light stress and circadian rhythm and that within photoreceptor cells crystallins appear to migrate in a light-independent, circadian fashion.
by
Thomas J. Jaworek;
Elodie M. Richard;
Anna Aleksandrovna Ivanova;
Arnaud P. J. Giese;
Daniel I. Choo;
Shaheen N. Khan;
Sheikh Riazuddin;
Richard A Kahn;
Saima Riazuddin
Exome sequencing coupled with homozygosity mapping was used to identify a transition mutation (c.794T > C; p.Leu265Ser) in ELMOD3 at the DFNB88 locus that is associated with nonsyndromic deafness in a large Pakistani family, PKDF468. The affected individuals of this family exhibited pre-lingual, severe-to-profound degrees of mixed hearing loss. ELMOD3 belongs to the engulfment and cell motility (ELMO) family, which consists of six paralogs in mammals. Several members of the ELMO family have been shown to regulate a subset of GTPases within the Ras superfamily. However, ELMOD3 is a largely uncharacterized protein that has no previously known biochemical activities. We found that in rodents, within the sensory epithelia of the inner ear, ELMOD3 appears most pronounced in the stereocilia of cochlear hair cells. Fluorescently tagged ELMOD3 co-localized with the actin cytoskeleton in MDCK cells and actin-based microvilli of LLC-PK1-CL4 epithelial cells. The p.Leu265Ser mutation in the ELMO domain impaired each of these activities. Super-resolution imaging revealed instances of close association of ELMOD3 with actin at the plasma membrane of MDCK cells. Furthermore, recombinant human GST-ELMOD3 exhibited GTPase activating protein (GAP) activity against the Arl2 GTPase, which was completely abolished by the p.Leu265Ser mutation. Collectively, our data provide the first insights into the expression and biochemical properties of ELMOD3 and highlight its functional links to sound perception and actin cytoskeleton.