Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
We introduce Airy-beam tomographic microscopy (ATM) for high-resolution, volumetric, inertia-free imaging of biological specimens. The work exploits the highly adjustable Airy trajectories in the 3D space, transforming the conventional telecentric wide-field imaging scheme that requires sample or focal-plane scanning to acquire 3D information. The results present a consistent near-diffraction-limited 3D resolution across a tenfold extended imaging depth compared to widefield microscopy. We anticipate the strategy to not only offer a promising paradigm for 3D optical microscopy, but also be translated to other non-optical waveforms.
Herpes simplex virus type 1 (HSV1) remains one of the most ubiquitous human pathogens on earth. The classical presentation of HSV1 infection occurs as a recurrent lesions of the oral mucosa commonly refer to as the common cold sore. However, HSV1 also is responsible for a range of ocular diseases in immunocompetent persons that are of medical importance, causing vision loss that may result in blindness. These include a recurrent corneal disease, herpes stromal keratitis, and a retinal disease, acute retinal necrosis, for which clinically relevant animal models exist. Diverse host immune mechanisms mediate control over herpesviruses, sustaining lifelong latency in neurons. Programmed cell death (PCD) pathways including apoptosis, necroptosis, and pyroptosis serve as an innate immune mechanism that eliminates virus-infected cells and regulates infection-associated inflammation during virus invasion. These different types of cell death operate under distinct regulatory mechanisms but all server to curtail virus infection. Herpesviruses, including HSV1, have evolved numerous cell death evasion strategies that restrict the hosts ability to control PCD to subvert clearance of infection and modulate inflammation. In this review, we discuss the key studies that have contributed to our current knowledge of cell death pathways manipulated by HSV1 and relate the contributions of cell death to infection and potential ocular disease outcomes.
by
Yihai Cao;
Jack Arbiser;
Robert J D'Amato;
Patricia A D'Amore;
Donald E Ingber;
Robert Kerbel;
Michael Klagsbrun;
Sharon Lim;
Marsha A Moses;
Bruce Zetter;
Harold Dvorak;
Robert Langer
Forty years ago, Judah Folkman predicted that tumor growth is dependent on angiogenesis and that inhibiting this process might be a new strategy for cancer therapy. This hypothesis formed the foundation of a new field of research that represents an excellent example of how a groundbreaking scientific discovery can be translated to yield benefits for patients. Today, antiangiogenic drugs are used to treat human cancers and retinal vascular diseases. Here, we guide readers through 40 years of angiogenesis research and discuss challenges of antiangiogenic therapy.
Recent Ebola epidemics, the ongoing COVID-19 pandemic, and emerging infectious disease threats have highlighted the importance of global infectious diseases and responses to public health emergencies. Ophthalmologists are essential health care workers who provide urgent and emergent vision care services during outbreaks and address the ocular consequences of epidemic and pandemic infectious diseases. In 2017, theWorld Health Organization (WHO) identified high priority pathogens likely to cause a future epidemic with the goal of guiding research and development to improve diagnostic tests, vaccines, and medicines. These measures were necessary to better inform and respond to public health emergencies.
Given the ocular complications associated with emerging infectious diseases, there is a need to recognize the ophthalmic sequelae for future vision health preparedness for potential future outbreaks. The WHO High Priority pathogens list provides a roadmap for ophthalmologists and subspecialty providers that will guide strategic areas of research for clinical care and preparedness for future pandemic threats. This review summarizes these key viral pathogens, summarizes major systemic disease findings, and delineates relevant ocular complications of the WHO High Priority pathogens list, including Crimean-Congo hemorrhagic fever, Filovirus diseases (Ebola virus disease and Marburg hemorrhagic fever), human Coronaviruses, Lassa Fever, Nipah virus infection, Zika, and Rift Valley fever.
BACKGROUND: Metastases account for 90% of all cancer-related deaths, becoming a therapeutic problem. Approximately 50% of all uveal melanoma (UM) patients will develop metastases, mainly in the liver. Post-mortem analyses of livers from metastatic UM patients showed two different metastatic growth patterns: infiltrative and nodular. The infiltrative pattern exhibits tumor infiltration directly to the hepatic lobule and minimal angiogenesis. The nodular pattern shows clusters of tumor cells around the portal venules that efface the liver parenchyma. We recently demonstrated Natural Killer (NK) cells play a pivotal role in the control of hepatic metastases and the pigment epithelial-derived factor (PEDF) controls angiogenesis in the liver using our established ocular melanoma animal model. In this study we investigated the role of NK cells and PEDF in the development of metastatic growth patterns, as this can contribute to the development of novel therapeutics specific towards each growth pattern. METHODS: We utilize our established ocular melanoma animal model by inoculation of B16-LS9 melanoma cells into C57BL/6 J mice (WT), anti-asialo GM1-treated C57BL/6 J mice (NK-depleted), and PEDF-/- C57BL/6 J mice. Three weeks after inoculation we evaluated the metastatic growth patterns and stratified them based of the numbers of tumor cells. To evaluate angiogenesis the mean vascular density (MVD) was calculated. The immune compartment of the liver was analyzed by flow cytometry. RESULTS: Our in vivo work showed two distinct metastatic growth patterns, the infiltrative and nodular, recapitulating the post-mortem analyses on human liver tissue. We discovered NK cells control the infiltrative growth. In contrast, PEDF controlled anti-angiogenic responses, showing higher MVD values compared to NK-depleted and WT animals. The myeloid lineage, comprised of monocytes, macrophages, and myeloid-derived suppressor cells, was reduced in the absence of NK cells or PEDF. CONCLUSIONS: Our animal model recapitulates the metastatic growth patterns observed in the human disease. We demonstrated a role for NK cells in the development of the infiltrative growth pattern, and a role for PEDF in the development of the nodular pattern. The understanding of the complexity associated with the metastatic progression has profound clinical implications in the diagnostic and disease-management as we can develop and direct more effective therapies.
HIV infection can result in vision loss from different causes, including HIV retinopathy and uveitis secondary to other infections, such as toxoplasmosis and viral retinitis. It is imperative to identify any infectious causes of uveitis to successfully treat the condition and prevent further vision loss. Metagenomic deep sequencing (MDS) is an emerging technology that presents an unbiased approach to the evaluation of clinical syndromes, including uveitis, that have not been diagnosed by pathogen-specific testing. Herein we present a case of a woman living with HIV with 11 years of relapsing bilateral uveitis refractory to systemic corticosteroid therapy who was diagnosed with human T-lymphotropic virus type 1 (HTLV-1)–associated uveitis by this technology. We also briefly review the literature of MDS as a diagnostic tool and the epidemiology, pathogenesis, and diagnosis of HTLV-1-associated uveitis.
Interleukin-17 (IL-17), a pro-inflammatory cytokine produced by CD4+ Th17 cells, has been associated with the pathogenesis of several autoimmune diseases including uveitis. The fate of IL-17 during HIV/AIDS, however, remains unclear, and a possible role for IL-17 in the pathogenesis of AIDS-related diseases has not been investigated. Toward these ends, we performed studies using a well-established animal model of experimental murine cytomegalovirus (MCMV) retinitis that develops in C57/BL6 mice with retrovirus-induced immunosuppression (MAIDS). After establishing baseline levels for IL-17 production in whole splenic cells of healthy mice, we observed a significant increase in IL-17 mRNA levels in whole splenic cells of mice with MAIDS of 4-weeks (MAIDS-4), 8-weeks (MAIDS-8), and 10-weeks (MAIDS-10) duration. In contrast, enriched populations of splenic CD4+ T cells, splenic macrophages, and splenic neutrophils exhibited a reproducible decrease in levels of IL-17 mRNA during MAIDS progression. To explore a possible role for IL-17 during the pathogenesis of MAIDS-related MCMV retinitis, we first demonstrated constitutive IL-17 expression in retinal photoreceptor cells of uninfected eyes of healthy mice. Subsequent studies, however, revealed a significant decrease in intraocular levels of IL-17 mRNA and protein in MCMV-infected eyes of MAIDS-10 mice during retinitis development. That MCMV infection might cause a remarkable downregulation of IL-17 production was supported further by the finding that systemic MCMV infection of healthy, MAIDS-4, or MAIDS-10 mice also significantly decreased IL-17 mRNA production by splenic CD4+ T cells. Based on additional studies using IL-10 -/- mice infected systemically with MCMV and IL-10 -/- mice with MAIDS infected intraocularly with MCMV, we propose that MCMV infection downregulates IL-17 production via stimulation of suppressor of cytokine signaling (SOCS)-3 and interleukin-10.
Ebola virus disease (EVD) and emerging infectious disease threats continue to threaten life, prosperity and global health security. To properly counteract EVD, an improved understanding of the long-term impact of recent EVD outbreaks in West Africa and the Democratic Republic of Congo are needed. In the wake of recent outbreaks, numerous health sequelae were identified in EVD survivors. These findings include joint pains, headaches, myalgias, and uveitis, a vision-threatening inflammatory condition of the eye. Retrospective and more recent prospective studies of EVD survivors from West Africa have demonstrated that uveitis may occur in 13-34% of patients with an increase in prevalence from baseline to 12-month follow-up. The clinical spectrum of disease ranges from mild, anterior uveitis to severe, sight-threatening panuveitis.
Untreated inflammation may ultimately lead to secondary complications of cataract and posterior synechiae, with resultant vision impairment. The identification of Ebola virus persistence in immune privileged organs, such as the eye, with subsequent tissue inflammation and edema may lead to vision loss. Non-human primate models of EVD have demonstrated tissue localization to the eye including macrophage reservoirs within the vitreous matter. Moreover, in vitro models of Ebola virus have shown permissiveness in retinal pigment epithelial cells, potentially contributing to viral persistence. Broad perspectives from epidemiologic studies of the outbreak, animal modeling, and immunologic studies of EVD survivors have demonstrated the spectrum of the eye disease, tissue specificity of Ebola virus infection, and antigen-specific immunologic response. Further studies in these areas will elucidate the mechanisms of this highly prevalent disease with the potential for improved therapeutics for Ebola virus in immune-privileged sites.