Aerobic exercise is a common intervention for rehabilitation of motor, and more recently, cognitive function (Intlekofer and Cotman, 2013; Wood et al., 2012). While the underlying mechanisms are complex, BDNF may mediate much of the beneficial effects of exercise to these neurons (Ploughman et al., 2007; Griffin et al., 2011; Real et al., 2013). We studied the effects of aerobic exercise on retinal neurons undergoing degeneration. We exercised wild-type BALB/c mice on a treadmill (10 m/min for 1 h) for 5 d/week or placed control mice on static treadmills. After 2 weeks of exercise, mice were exposed to either toxic bright light (10,000 lux) for 4 h to induce photoreceptor degeneration or maintenance dim light (25 lux). Bright light caused 75% loss of both retinal function and photoreceptor numbers. However, exercised mice exposed to bright light had 2 times greater retinal function and photoreceptor nuclei than inactive mice exposed to bright light. In addition, exercise increased retinal BDNF protein levels by 20% compared with inactive mice. Systemic injections of a BDNF tropomyosin-receptor-kinase (TrkB) receptor antagonist reduced retinal function and photoreceptor nuclei counts in exercised mice to inactive levels, effectively blocking the protective effects seen with aerobic exercise. The data suggest that aerobic exercise is neuroprotective for retinal degeneration and that this effect is mediated by BDNF signaling.
Purpose: Our previous investigations showed that involuntary treadmill exercise is neuroprotective in a light-induced retinal degeneration mouse model, and it may act through activation of tropomyosin-related kinase B (TrkB) receptors. This study investigated whether voluntary running wheel exercise can be neuroprotective in an inheritable model of the retinal degenerative disease retinitis pigmentosa (RP), rd10 mice.
Methods: Breeding pairs of rd10 and C57BL/6J mice were given free-spinning (active) or locked (inactive) running wheels. Pups were weaned into separate cages with their parents’ respective wheel types, and visual function was tested with ERG and a virtual optokinetic system at 4, 5, and 6 weeks of age. Offspring were killed at 6 weeks of age and retinal cross-sections were prepared for photoreceptor nuclei counting. Additionally, separate cohorts of active and inactive rd10 pups were injected daily for 14 days after eye opening with a selective TrkB receptor antagonist (ANA-12) or vehicle solution and assessed as described above.
Results: Mice in the rd10 active group exhibited significant preservation of visual acuity, cone nuclei, and total photoreceptor nuclei number. Injection with ANA-12 precluded the preservation of visual acuity and photoreceptor nuclei number in rd10 mice.
Conclusions: Voluntary running partially protected against the retinal degeneration and vision loss that otherwise occurs in the rd10 mouse model of RP. This protection was prevented by injection of ANA-12, suggesting that TrkB activation mediates exercise’s preservation of the retina. Exercise may serve as an effective, clinically translational intervention against retinal degeneration.
Dopamine is a retinal neuromodulator that has been implicated in many aspects of retinal physiology. Photoreceptor cells express dopamine D4 receptors that regulate cAMP metabolism. To assess the effects of dopamine on photoreceptor physiology, we examined the morphology, electrophysiology, and regulation of cAMP metabolism in mice with targeted disruption of the dopamine D4 receptor gene. Photoreceptor morphology and outer segment disc shedding after light onset were normal in D4 knock-out (D4KO) mice. Quinpirole, a dopamine D2/ D3/D4 receptor agonist, decreased cAMP synthesis in retinas of wild-type (WT) mice but not in retinas of D4KO mice. In WT retinas, the photoreceptors of which were functionally isolated by incubation in the presence of exogenous glutamate, light also suppressed cAMP synthesis. Despite the similar inhibition of cAMP synthesis, the effect of light is directly on the photo-receptors and independent of dopamine modulation, because it was unaffected by application of the D4 receptor antagonist L-745,870. Nevertheless, compared with WT retinas, basal cAMP formation was reduced in the photoreceptors of D4KO retinas, and light had no additional inhibitory effect. The results suggest that dopamine, via D4 receptors, normally modulates the cascade that couples light responses to adenylyl cyclase activity in photoreceptor cells, and the absence of this modulation results in dysfunction of the cascade. Dark-adapted electroretinogram (ERG) responses were normal in D4KO mice. However, ERG b-wave responses were greatly suppressed during both light adaptation and early stages of dark adaptation. Thus, the absence of D4 receptors affects adaptation, altering transmission of light responses from photoreceptors to inner retinal neurons. These findings indicate that dopamine D4 receptors normally play a major role in regulating photoreceptor cAMP metabolism and adaptive retinal responses to changing environmental illumination.
by
Ninel Z. Gregori;
Natalia F. Callaway;
Catherine Hoeppner;
Alex Yuan;
Aleksandra Rachitskaya;
William Feuer;
Hossein Ameri;
J. Fernando Arevalo;
Albert J. Augustin;
David G. Birch;
Gislin Dagnelie;
Salvatore Grisanti;
Janet L. Davis;
Paul Hahn;
James T. Handa;
Allen C. Ho;
Suber S. Huang;
Mark S. Humayun;
Raymond Iezzi, Jr;
Jiong Yan
Purpose: To assess the retinal anatomy and array position in Argus II retinal prosthesis recipients. Design: Prospective, noncomparative cohort study.
Methods: SETTING: International multicenter study.
PATIENTS: Argus II recipients enrolled in the Post-Market Surveillance Studies.
PROCEDURES: Spectral-domain optical coherence tomography images collected for the Surveillance Studies (NCT01860092 and NCT01490827) were reviewed. Baseline and postoperative macular thickness, electrode-retina distance (gap), optic disc–array overlap, and preretinal membrane presence were recorded at 1, 3, 6, and 12 months.
MAIN OUTCOME MEASURES: Axial retinal thickness and axial gap along the array's long axis (a line between the tack and handle); maximal retinal thickness and maximal gap along a B-scan near the tack, midline, and handle.
Results: Thirty-three patients from 16 surgical sites in the United States and Germany were included. Mean axial retinal thickness increased from month 1 through month 12 at each location, but reached statistical significance only at the array midline (P =.007). The rate of maximal thickness increase was highest near the array midline (slope = 6.02, P =.004), compared to the tack (slope = 3.60, P <.001) or the handle (slope = 1.93, P =.368). The mean axial and maximal gaps decreased over the study period, and the mean maximal gap size decrease was significant at midline (P =.032). Optic disc–array overlap was seen in the minority of patients. Preretinal membranes were common before and after implantation.
Conclusions: Progressive macular thickening under the array was common and corresponded to decreased electrode-retina gap over time. By month 12, the array was completely apposed to the macula in approximately half of the eyes.
by
Nan Zhang;
Tara L. Favazza;
Anna Maria Baglieri;
Ilan Y. Benador;
Emily R. Noonan;
Anne B. Fulton;
Ronald M. Hansen;
P Michael Iuvone;
James D. Akula
PURPOSE: Dopamine (DA) is a neurotransmitter implicated both in modulating neural retinal signals and in eye growth. Therefore, it may participate in the pathogenesis of the most common clinical sequelae of retinopathy of prematurity (ROP), visual dysfunction and myopia. Paradoxically, in ROP myopia the eye is usually small. The eye of the rat with oxygen-induced retinopathy (OIR) is characterized by retinal dysfunction and short axial length. There have been several investigations of the early maturation of DA in rat retina, but little at older ages, and not in the OIR rat. Therefore, DA, retinal function, and refractive state were investigated in the OIR rat.METHODS: In one set of rats, the development of dopaminergic (DAergic) networks was evaluated in retinal cross-sections from rats aged 14 to 120 days using antibodies against tyrosine hydroxylase (TH, the rate-limiting enzyme in the biosynthesis of DA). In another set of rats, retinoscopy was used to evaluate spherical equivalent (SE), electoretinography (ERG) was used to evaluate retinal function, and high-pressure liquid chromatography (HPLC) was used to evaluate retinal contents of DA, its precursor levodopamine (DOPA), and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC).RESULTS: The normally rapid postnatal ramification of DAergic neurons was disrupted in OIR rats. Retinoscopy revealed that OIR rats were relatively myopic. In the same eyes, ERG confirmed retinal dysfunction in OIR. HPLC of those eyes' retinae confirmed low DA. Regression analysis indicated that DA metabolism (evaluated by the ratio of DOPAC to DA) was an important additional predictor of myopia beyond OIR.CONCLUSIONS: The OIR rat is the first known animal model of myopia in which the eye is smaller than normal. Dopamine may modulate, or fail to modulate, neural activity in the OIR eye, and thus contribute to this peculiar myopia.
Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia.
Purpose: Previous studies demonstrated that systemic treatment with tauroursodeoxycholic acid (TUDCA) is protective in in vivo mouse models of retinal degeneration and in culture models of hyperglycemia. This study tested the hypothesis that TUDCA will preserve visual and retinal function in a mouse model of early diabetic retinopathy (DR). Methods: Adult C57BL/6J mice were treated with streptozotocin (STZ) and made diabetic at 8–10 weeks of age. Control and diabetic mice were treated with vehicle or TUDCA starting 1 or 3 weeks after induction of diabetes, and were assessed bimonthly for visual function via an optomotor response and monthly for retinal function via scotopic electroretinograms. Results: Diabetic mice showed significantly reduced spatial frequency and contrast sensitivity thresholds compared to control mice, while diabetic mice treated early with TUDCA showed preservation at all timepoints. A-wave, b-wave, and oscillatory potential 2 (OP2) amplitudes decreased in diabetic mice. Diabetic mice also exhibited delays in a-wave and OP2-implicit times. Early TUDCA treatment ameliorated a-wave, b-wave, and OP2 deficits. Late TUDCA treatment showed reduced preservation effects compared to early treatment. Conclusions: Early TUDCA treatment preserved visual function in an STZ-mouse model of Type I diabetes. These data add to a growing body of preclinical research that may support testing whether TUDCA may be an effective early clinical intervention against declining visual function caused by diabetic retinopathy.
by
Jacob G. Light;
James W. Fransen;
Adewumi N. Adekunle;
Alice Adkins;
Gobinda Pangeni;
James Loudin;
Keith Mathieson;
Daniel V. Palanker;
Maureen A. McCall;
Machelle Pardue
Photovoltaic arrays (PVA) implanted into the subretinal space of patients with retinitis pigmentosa (RP) are designed to electrically stimulate the remaining inner retinal circuitry in response to incident light, thereby recreating a visual signal when photoreceptor function declines or is lost. Preservation of inner retinal circuitry is critical to the fidelity of this transmitted signal to ganglion cells and beyond to higher visual targets. Post-implantation loss of retinal interneurons or excessive glial scarring could diminish and/or eliminate PVA-evoked signal transmission. As such, assessing the morphology of the inner retina in RP animal models with subretinal PVAs is an important step in defining biocompatibility and predicting success of signal transmission. In this study, we used immunohistochemical methods to qualitatively and quantitatively compare inner retinal morphology after the implantation of a PVA in two RP models: the Royal College of Surgeons (RCS) or transgenic S334ter-line 3 (S334ter-3) rhodopsin mutant rat. Two PVA designs were compared. In the RCS rat, we implanted devices in the subretinal space at 4 weeks of age and histologically examined them at 8 weeks of age and found inner retinal morphology preservation with both PVA devices. In the S334ter-3 rat, we implanted devices at 6-12 weeks of age and again, inner retinal morphology was generally preserved with either PVA design 16-26 weeks post-implantation. Specifically, the length of rod bipolar cells and numbers of cholinergic amacrine cells were maintained along with their characteristic inner plexiform lamination patterns. Throughout the implanted retinas we found nonspecific glial reaction, but none showed additional glial scarring at the implant site. Our results indicate that subretinally implanted PVAs are well-tolerated in rodent RP models and that the inner retinal circuitry is preserved, consistent with our published results showing implant-evoked signal transmission.
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT 1 and MT 2 have been identified in the mammalian retina. MT 1 and MT 2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.