Purpose: To evaluate capillaries perfusion and retinal nerve fiber layer (RNFL) thickness diurnal changes of macular/optic disc regions among participants with or without obstructive sleep apnea-hypopnea (OSA) using spectral-domain optical coherence tomography angiography (OCTA). Methods: In this study, we enrolled a cohort of 35 participants including 14 patients with mild-to-moderate OSA, 12 patients with severe OSA, and 9 healthy individuals. All participants had Berlin questionnaire filled. At 20:00 and 6:30, right before and after the polysomnography examination, a comprehensive ocular examination was conducted. The systemic and ocular clinical characteristics were collected, and OCTA scans were performed repeatedly. Blood flow and RNFL thickness parameters were then exported using built-in software and analyzed accordingly. Results: After sleep, the overall vessel density (VD) variables, especially macular and choriocapillaris VDs, were relatively comparative and stable. One exception was the RPC vessel density at the inside-disc region with a decreasing trend in the mild-to-moderate group (p=0.023). RNFL changes before and after sleep in the nasal-inferior and peripapillary region were statistically significant (p=0.003; p=0.043) among three groups. And multiple testing correction verified the significant difference in diurnal changes between the mild-to-moderate group and the control group in pairwise comparisons (p=0.006; p=0.02). Conclusions: The changes of imperceptible blood flow and RNFL thickness overnight around optic disc areas could be observed in OSA patients. Despite physiological fluctuations, aberrant diurnal changes might be useful for identifying a decrease in micro-environmental stability associated with the development of various ocular diseases such as glaucoma. Other VD variables, especially macular and choriocapillaris VDs, are relatively stable in eyes of patients having OSA with different severity.
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness in the world and is influenced by various sociodemographic factors. This meta-analysis aims to determine the worldwide prevalence of POAG in the adult general population for the last 20 years, and explore variation in prevalence by age, gender and geographical location. An electronic literature search was performed using the PubMed, Embase, and Web of Science databases. Population-based cross-sectional or cohort studies published in the last 20 years (2000–2020) that reported prevalence of POAG were recruited. Relevant studies meeting defined eligibility criteria were selected and reviewed systematically by meta-analysis. The prevalence of POAG was analyzed according to various risk factors. A random effect model was used for the meta-analysis. Fifty publications with a total of 198,259 subjects were included in this meta-analysis. The worldwide overall prevalence of POAG was 2.4% (95% CI 2.0 ~ 2.8%). The prevalence increases with age. Men are found to be more susceptible to POAG than women (RR 1.28, p < 0.01). Africa is found to have the highest prevalence of POAG (4.0%) among all continents. The current estimated global population of POAG is 68.56 million (95% CI 59.99 ~ 79.98). POAG is a worldwide vision threatening disease with high prevalence for the last 20 years. The population-based prevalence of POAG varies widely across individual studies, due to variations in risk factors of age, gender, and population geographic location.
Globally, there are nearly three million people living with multiple sclerosis (PLW-MS). Many PLW-MS experience vertigo and have signs of vestibular dysfunction, e.g., low vestibulo–ocular reflex (VOR) gains or the presence of compensatory saccades (CSs), on video head impulse testing (vHIT). We examined whether the vestibular function and compensatory oculomotor behaviors in PLW-MS differed based on the level of MS-related disability. The VOR gain, CS frequency and latency, and gaze position error (GPE) were calculated from the individual traces obtained during six-canal vHIT for 37 PLW-MS (mean age 53.4 ± 12.4 years-old, 28 females) with vertigo and/or an imbalance. The subjects were grouped by their Expanded Disability Status Scale (EDSS) scores: PLW-min-MS (EDSS = 1.0–2.5, n = 8), PLW-mild-MS (EDSS = 3.0–4.5, n = 23), and PLW-moderate-MS (EDSS = 5.0–6.0, n = 6). The between-group differences were assessed with Kruskal–Wallis tests. The VOR gains for most of the canals were higher for PLW-min-MS compared to PLW-mild- and mod-MS, respectively. CS occurred less often in PLW-min-MS versus PLW-mild- and mod-MS, respectively. No clear trend in CS latency was found. The GPE was often lower for PLW-min-MS compared to PLW-mild- and mod-MS, respectively. Thus, our data demonstrate that worse VOR and compensatory oculomotor functions are associated with a greater MS-related disability. PLW-MS may benefit from personalized vestibular physical therapy.
Introduction: Uncorrected refractive error is one of the major causes of visual impairment in children and adolescents worldwide. During the COVID-19 epidemic, home isolation is considered a boost to the progression of children's myopia. Under geographical conditions of high altitude and strong sunshine, the Tibetan plateau is the main residence of the Tibetan population, where little information is available about the refractive status and developmental trajectory. Therefore, this article aimed to evaluate the distribution, progression, and associated factors of the refractive status in second-grade children in Lhasa after COVID-19 quarantine. Materials and Methods: Students from 7 elementary schools completed comprehensive ocular examinations in the Lhasa Childhood Eye Study. Data regarding cycloplegic refraction and corneal biometry parameters, including axial length (AL), corneal power, anterior chamber depth (ACD), and other demographic factors, were analyzed. Results: A total of 1,819 students were included, with a mean age of 7.9 ± 0.5 years, of which 961 were boys (52.8%), and 95.1% were Tibetan. The prevalence of myopia, emmetropia, mild hyperopia, and hyperopia was 10.94%, 24.02%, 60.80%, and 4.24%, respectively. Besides, the average cycloplegic spherical equivalent refraction (SER) was +1.07 ± 0.92 diopter (D) before the COVID-19 quarantine and +0.59 ± 1.08D after the quarantine (p < 0.05), with a growth rate of 7%. Moreover, the prevalence of hyperopia in girls was significantly higher than that of boys (p < 0.001). Nonetheless, the proportion of myopia and emmetropia was similar (p = 0.75). Meanwhile, children in suburban schools had a significantly lower proportion of myopia (p < 0.001). The average AL, ACD, lens power (LP), and AL-to-corneal radius (AL/CR) ratio were 22.79 ± 0.78 mm, 3.54 ± 0.21 mm, 25.12 ± 1.48D, and 2.93 ± 0.08, respectively. The results of AL, ACD, and AL/CR for girls were significantly lower than for boys, while the result of LP is the opposite (p < 0.001). Finally, multivariate regression analysis revealed that SER was negatively correlated with AL, LP, and AL/CR ratio, while positively correlated with CR and ACD (p < 0.001). Conclusion: This study found that after the COVID-19 confinement, myopia progressed faster in Lhasa children but was still significantly lower than that of plain cities in China. Compared to short-term confinement, this acceleration was more likely related to the growth and general trend of myopia in children. Collectively, these findings help to explore the differences in ocular growth and development among children of different ethnic groups.
Purpose: Bevacizumab, a humanized monoclonal antibody to vascular endothelial growth factor-A (VEGF-A), was originally developed as an anti-tumor treatment. In ocular oncology, it is being used to treat macular edema due to radiation retinopathy, but it may also be useful for the treatment of primary uveal melanoma (UM) or its metastases. We determined the effect of bevacizumab on the growth of B16F10 cells inside the eye and on B16F10 and UM cells cultured in vitro.
Methods: B16F10 melanoma cells were placed into the anterior chamber of the eye of C57Bl/6 mice and tumor growth was monitored after injection of different doses of bevacizumab or mock injection. In addition, the effect of bevacizumab on in vitro growth of B16F10 and human UM cells and on the expression of VEGF-A, GLUT-1, and HIF-1α was evaluated.
Results: Following intraocular injection of bevacizumab into murine B16 tumor-containing eyes, an acceleration of tumor growth was observed, with the occurrence of anterior chamber hemorrhages. Bevacizumab did not affect proliferation of B16F10 cells in vitro, while it inhibited UM cell proliferation. Expression analysis demonstrated that addition of bevacizumab under hypoxic conditions induced VEGF-A, GLUT-1 and HIF-1α in B16F10 cells as well as in UM cell lines and two of four primary UM tumor cultures.
Conclusions: In contrast with expectations, intraocular injection of bevacizumab stimulated B16F10 melanoma growth in murine eyes. In vitro exposure of B16 and human UM cells to bevacizumab led to paradoxical VEGF-A upregulation. The use of VEGF inhibitors for treatment of macular edema (due to radiation retinopathy) after irradiation of UM should be considered carefully, because of the possible adverse effects on residual UM cells.
We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits—from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.
Treatment of many posterior-segment ocular indications would benefit from improved targeting of drug delivery to the back of the eye. Here, we propose the use of iontophoresis to direct delivery of negatively charged nanoparticles through the suprachoroidal space (SCS) toward the posterior pole of the eye. Injection of nanoparticles into the SCS of the rabbit eye ex vivo without iontophoresis led to a nanoparticle distribution mostly localized at the site of injection near the limbus and <15% of nanoparticles delivered to the most posterior region of SCS (>9 mm from the limbus). Iontophoresis using a novel microneedle-based device increased posterior targeting with >30% of nanoparticles in the most posterior region of SCS. Posterior targeting increased with increasing iontophoresis current and increasing application time up to 3 min, but further increasing to 5 min was not better, probably due to the observed collapse of the SCS within 5 min after injection ex vivo. Reversing the direction of iontophoretic flow inhibited posterior targeting, with just ~5% of nanoparticles reaching the most posterior region of SCS. In the rabbit eye in vivo, iontophoresis at 0.14 mA for 3 min after injection of a 100 μL suspension of nanoparticles resulted in ~30% of nanoparticles delivered to the most posterior region of the SCS, which was consistent with ex vivo findings. The procedure was well tolerated, with only mild, transient tissue effects at the site of injection. We conclude that iontophoresis in the SCS using a microneedle has promise as a method to target ocular drug delivery within the eye, especially toward the posterior pole.
Background: The refraction prediction error (PE) for infants with intraocular lens (IOL) implantation is large, possibly related to an effective lens position (ELP) that is different than in adult eyes. If these eyes still have nonadult ELPs as they age, this could result in persistently large PE. We aimed to determine whether ELP or biometry at age 10½ years correlated with PE in children enrolled in the Infant Aphakia Treatment Study (IATS). Methods: We compared the measured refraction of eyes randomized to primary IOL implantation to the “predicted refraction” calculated by the Holladay 1 formula, based on biometry at age 10½ years. Eyes with incomplete data or IOL exchange were excluded. The PE (predicted − measured refraction) and absolute PE were calculated. Measured anterior chamber depth (ACD) was used to assess the effect of ELP on PE. Multiple regression analysis was performed on absolute PE versus axial length, corneal power, rate of refractive growth, refractive error, and best-corrected visual acuity. Results: Forty-three eyes were included. The PE was 0.63 ± 1.68 D; median absolute PE, 0.85 D (IQR, 1.83 D). The median absolute PE was greater when the measured ACD was used to calculate predicted refraction instead of the standard A-constant (1.88 D [IQR, 1.72] D vs 0.85 D [IQR, 1.83], resp. [P = 0.03]). Absolute PE was not significantly correlated with any other parameter. Conclusions: Variations in ELP did not contribute significantly to PE 10 years after infant cataract surgery.[Formula presented]
by
Betsy Sleath;
Susan J. Blalock;
Delesha M. Carpenter;
Kelly W. Muir;
Robyn Sayner;
Scott Lawrence;
Annette Giangiacomo;
Mary Elizabeth Hartnett;
Gail Tudor;
Jason Goldsmith;
Alan L. Robin
Objective. The purpose of this study was to examine how patient, physician, and situational factors are associated with the extent to which providers educate patients about glaucoma and glaucoma medications, and which patient and provider characteristics are associated with whether providers educate patients about glaucoma and glaucoma medications. Methods. Patients with glaucoma who were newly prescribed or on glaucoma medications were recruited and a cross-sectional study was conducted at six ophthalmology clinics. Patients' visits were videotape recorded and patients were interviewed after visits. Generalized estimating equations were used to analyze the data. Results. Two hundred and seventy-nine patients participated. Providers were significantly more likely to educate patients about glaucoma and glaucoma medications if they were newly prescribed glaucoma medications. Providers were significantly less likely to educate African American patients about glaucoma. Providers were significantly less likely to educate patients of lower health literacy about glaucoma medications. Conclusion. Eye care providers did not always educate patients about glaucoma or glaucoma medications. Practice Implications. Providers should consider educating more patients about what glaucoma is and how it is treated so that glaucoma patients can better understand their disease. Even if a patient has already been educated once, it is important to reinforce what has been taught before.
PURPOSE OF REVIEW: The purpose of this study is to review commonly encountered adverse ocular effects of illicit drug use. RECENT FINDINGS: Drug and alcohol abuse can produce a variety of ocular and neuro-ophthalmic side effects. Novel, so-called 'designer', drugs of abuse can lead to unusual ocular disorders. Legal substances, when used in manners for which they have not been prescribed, can also have devastating ophthalmic consequences. SUMMARY: In this review, we will systematically evaluate each part of the visual pathways and discuss how individual drugs may affect them.