Head and neck cancers are among the deadliest cancers, ranked sixth globally in rates of high mortality and poor patient prognoses. The prevalence of head and neck squamous cell carcinoma (HNSCC) is associated with smoking and excessive alcohol consumption. Despite several advances in diagnostic and interventional methods, the morbidity of subjects with HNSCC has remained unchanged over the last 30 years. Epigenetic alterations, such as DNA hypermethylation, are commonly associated with several cancers, including HNSCC. Thus, epigenetic changes are considered promising therapeutic targets for chemoprevention. Here, we investigated the effect of EGCG on DNA hypermethylation and the growth of HNSCC. First, we assessed the expression levels of global DNA methylation in HNSCC cells (FaDu and SCC-1) and observed enhanced methylation levels compared with normal human bronchial epithelial cells (NHBE). Treatment of EGCG to HNSCC cells significantly inhibited global DNA hypermethylation by up to 70–80% after 6 days. Inhibition of DNA hypermethylation in HNSCC cells was confirmed by the conversion of 5-methylcytosine (5-mc) into 5-hydroxy methylcytosine (5hmC). DNA methyltransferases regulate DNA methylation. Next, we checked the effect of EGCG on the expression levels of DNA methyltransferases (DNMTs) and DNMT activity. Treatment of EGCG to HNSCC cells significantly reduced DNMT activity to 60% in SCC-1 and 80% in FaDu cells. The protein levels of DNMT3a and DNMT3b were downregulated in both cell lines after EGCG treatment. EGCG treatment to HNSCC cells reactivated tumor suppressors and caused decreased cell proliferation. Our in vivo study demonstrated that administration of EGCG (0.5%, w/w) as a supplement within an AIN76A diet resulted in inhibition of tumor growth in FaDu xenografts in nude mice (80%; p < 0.01) compared with non-EGCG-treated controls. The growth inhibitory effect of dietary EGCG on the HNSCC xenograft tumors was associated with the inhibition of DNMTs and reactivation of silenced tumor suppressors. Together, our study provides evidence that EGCG acts as a DNA demethylating agent and can reactivate epigenetically silenced tumor suppressors to inhibit the growth of HNSCC cells.
Electrical deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective for ameliorating the motor symptoms of Parkinson’s disease (PD) including bradykinesia. The STN receives its main excitatory input from cortex; however, the contribution of cortico-subthalamic projection neurons to the effects of DBS remains unclear. To isolate the consequences of stimulating layer 5 primary motor cortex (M1) projections to the STN, we used a dual virus transfection technique to selectively express opsins in these neurons in mice made parkinsonian by unilateral nigrostriatal 6-OHDA lesioning. AAVs containing WGA-Cre constructs were injected in the STN to retrogradely place Cre in STN afferents, while AAVs containing Cre-dependent ultrafast hChR2(E123T/T159C)-EYFP opsin constructs were injected in M1 layer 5, producing specific opsin expression in M1-STN projections. Under unstimulated conditions, lesioned mice showed bradykinesia and hypokinesia (decreased movement), along with electrophysiological changes similar to those observed in PD patients. Specifically, low frequency power (theta, alpha, low beta) was increased and gamma power was decreased, while M1/STN coherence and STN phase-amplitude-coupling (PAC) were increased. Optogenetic stimulation (100–130 Hz) of STN afferents in these mice ameliorated bradykinesia and hypokinesia and brought the neural dynamics closer to the non-parkinsonian state by reducing theta and alpha and increasing gamma power in M1, decreasing STN PAC, and reducing theta band coherence. Histological examination of the EYFP expression revealed that, in addition to orthodromic and antidromic effects, stimulation of cortico-subthalamic neurons may cause wide-spread increased glutamatergic activity due to collaterals that project to areas of the thalamus and other brain regions.
by
Delesha M. Carpenter;
Gail E. Tudor;
Robyn Sayner;
Kelly W. Muir;
Alan L. Robin;
Susan J. Blalock;
Mary Elizabeth Hartnett;
Annette Giangiacomo;
Betsy L. Sleath
Objective: We examined whether six patient-provider communication behaviors directly affected the intraocular pressure (IOP) of glaucoma patients or whether patient medication adherence and eye drop technique mediated the relationship between self-efficacy, communication, and IOP.
Methods: During an 8-month, longitudinal study of 279 glaucoma patients and 15 providers, two office visits were videotape-recorded, transcribed, and coded for six patient-provider communication behaviors. Medication adherence was measured electronically and IOP was extracted from medical records. We ran generalized estimating equations to examine the direct effects of communication on IOP and used bootstrapping to test whether medication adherence and eye drop technique mediated the effect of communication on IOP.
Results: Provider education about medication adherence (B = −0.50, p < 0.05) and inclusion of patient input into the treatment plan (B = −0.35, p < 0.05) predicted improved IOP. There was no evidence of significant mediation.
Conclusion: The positive effects of provider education and provider inclusion of patient input in the treatment plan were not mediated by adherence and eye drop technique.
Practice Implications: Providers should educate glaucoma patients about the importance of medication adherence and include patient input into their treatment plan.
The purpose of this study was to expand our knowledge of small RNAs, which are known to function within protein complexes to modulate the transcriptional output of the cell. Here we describe two previously unrecognized, small RNAs, termed pY RNA1-s1 and pY RNA1-s2 (processed Y RNA1-stem -1 and -2), thereby expandi ng the list of known small RNAs. pY RNA1-s1 and pY RNA1-s2 were discovered by RNA sequencing and found to be 20-fold more abundant in the retina than in 14 other rat tissues. Retinal expression of pY RNAs is highly conserved, including expression in the human retina, and occurs in all retinal cell layers. Mass spectrometric analysis of pY RNA1-S2 binding proteins in retina indicates that pY RNA1-s2 selectively binds the nuclear matrix protein Matrin 3 (Matr3) and to a lesser degree to hnrpul1 (heterogeneous nuclear ribonucleoprotein U-like protein). In contrast, pY RNA1-s1 does not bind these proteins. Accordingly, the molecular mechanism of action of pY RNA1-s2 is likely be through an action involving Matr3; this 95 kDa protein has two RNA recognition motifs (RRMs) and is implicated in transcription and RNA-editing. The high affinity binding of pY RNA1-s2 to Matr3 is strongly dependent on the sequence of the RNA and both RRMs of Matr3. Related studies also indicate that elements outside of the RRM region contribute to binding specificity and that phosphorylation enhances pY RNA-s2/Matr3 binding. These observations are of significance because they reveal that a previously unrecognized small RNA, pY RNA1-s2, binds selectively to Matr3. Hypothetically, pY RNA1-S2 might act to modulate cellular function through this molecular mechanism. The retinal enrichment of pY RNA1-s2 provides reason to suspect that the pY RNA1-s2/Matr3 interaction could play a role in vision.
PURPOSE. Innate immunity plays a role in many diseases, including glaucoma and AMD. We have used transcriptome profiling in the mouse to identify a network of genes involved in innate immunity that is present in the normal retina and that is activated by optic nerve crush (ONC).
METHODS. Using a recombinant inbred (RI) mouse strain set (BXD, C57BL/6 crossed with DBA/ 2J mice), we generate expression datasets (Illumina WG 6.2 arrays) in the normal mouse retina and 2 days after ONC. The normal dataset is constructed from retinas from 80 mouse strains and the ONC dataset is constructed from 62 strains. These large datasets are hosted by GeneNetwork.org, along with a series of powerful bioinformatic tools.
RESULTS. In the retina datasets, one intriguing network involves transcripts associated with the innate immunity. Using C4b to interrogate the normal dataset, we can identify a group of genes that are coregulated across the BXD RI strains. Many of the genes in this network are associated with the innate immune system, including Serping1, Casp1, C3, Icam1, Tgfbr2, Cfi, Clu, C1qg, Aif1, and Cd74. Following ONC, the expression of these genes is upregulated, along with an increase in coordinated expression across the BXD strains. Many of the genes in this network are risk factors for AMD, including C3, EFEMP1, MCDR2, CFB, TLR4, HTA1, and C1QTNF5.
CONCLUSIONS. We found a retina-intrinsic innate immunity network that is activated by injury including ONC. Many of the genes in this network are risk factors for retinal disease.
Purpose.
To determine whether multivariate, functional principal component analysis of the size and shape of retinal pigment epithelial (RPE) cell morphology allows discrimination of mouse RPE genotypes and age.
Methods.
Flatmounts of RPE sheets obtained from C57BL/6J (n = 50) and rd10 (n = 61) mice at postnatal days 30 to 720 were stained for zonula occludens-1 (ZO-1) and imaged with confocal microscopy. A total of 111 flatmounts were prepared. Twenty-one morphometric measurements were made on tiled, composite images of complete flatmounts, including cell location, area, and eccentricity, using automated image analysis software for quantitatively measuring cell phenotypes.
Results.
In young (≤61-day-old) C57BL/6J mice, the RPE morphology resembled a regular hexagonal array of cells of uniform size throughout the retina, except near the ciliary body, where the shapes of RPE resembled a soft network. Old (≥180-day-old) C57BL/6J eyes had a subpopulation of large cells. A clear disruption of the regular cell size and shape appeared in rd10 mutants. Aspect ratio and cell area gave rise to principal components that predictively classified mouse age and genotype.
Conclusions.
Quantitative differences in the RPE sheet morphology allowed discrimination of rd10 from C57BL/6J strains despite the confounding effect of aging. This has implications for RPE sheet morphology as a potential early biomarker for diagnosis of eye disease and prognosis of the eye at early stages when disease is subtle. We conclude that an RPE cell's area and aspect ratio are very early quantitative indicators that predict progression to advanced RPE disease as manifested in rd10.
Background
To compare a near decade of follow-up, newer control cohort data, use of both the societal and third party insurer cost perspectives, and integration of unilateral/bilateral therapy on the comparative effectiveness and cost-effectiveness of intravitreal ranibizumab therapy for neovascular, age-related macular degeneration (AMD).
Methods
Value-Based Medicine®, 12-year, combined-eye model, cost-utility analysis employing MARINA and HORIZON clinical trial data. Preference-based comparative effectiveness outcomes were quantified in (1) QALY (quality-adjusted life-year) gain, and (2) percent improvement in quality-of-life, while cost-effectiveness outcomes were quantified in (3) the cost-utility ratio (CUR) and financial return-on-investment (ROI) to society.
Results
Using MARINA and HORIZON trial data and a meta-analysis control cohort after 24 months, ranibizumab therapy conferred a combined-eye patient value (quality-of-life) gain of 16.3%, versus 10.4% found in 2006. The two-year direct ophthalmic medical cost for ranibizumab therapy was $46,450, a 33.8% real dollar decrease from 2006. The societal cost perspective CUR was −$242,920/QALY, indicating a $282,517 financial return-on-investment (ROI), or 12.3%/year to society for direct ophthalmic medical costs expended. The 3rd party insurer CUR ranged from $21,199/QALY utilizing all direct, medical costs, to $69,591/QALY using direct ophthalmic medical costs.
Conclusions
Ranibizumab therapy for neovascular AMD in 2015, considering treatment of both eyes, conferred greater patient value gain (comparative effectiveness) and improved cost-effectiveness than in 2006, as well as a large monetary return-on-investment to the Gross Domestic Product and nation’s wealth. The model herein integrates important novel features for neovascular age-related macular degeneration, vitreoretinal cost effectiveness analyses, including: (1) treatment of both eyes, (2) a long-term, untreated control cohort, and (3) the use of societal costs.
BACKGROUND: The prevalence of optic nerve and retinal vascular changes within the obstructive sleep apnea (OSA) population are not well-known, although it has been postulated that optic nerve ischemic changes and findings related to an elevated intracranial pressure may be more common in OSA patients. We prospectively evaluated the ocular fundus in unselected patients undergoing overnight diagnostic polysomnography (PSG).
METHODS: Demographic data, medical/ocular history, and nonmydriatic fundus photographs were prospectively collected in patients undergoing PSG at our institution and reviewed for the presence of optic disc edema for which our study was appropriately powered a priori. Retinal vascular changes were also evaluated. OSA was defined using the measures of both sleep-disordered breathing and hypoxia.
RESULTS: Of 250 patients evaluated in the sleep center, fundus photographs were performed on 215 patients, among whom 127 patients (59%) had an apnea/hypopnea index (AHI) ≥15 events per hour, including 36 with severe OSA. Those with AHI <15 served as the comparison group. None of the patients had optic disc edema (95% confidence interval [CI]: 0%-3%). There was no difference in rates of glaucomatous appearance or pallor of the optic disc among the groups. Retinal arteriolar changes were more common in severe OSA patients (odds ratio: 1.09 per 5 unit increase in AHI; 95% CI, 1.02-1.16; P = 0.01), even after controlling for mean arterial blood pressure.
CONCLUSIONS: We did not find an increased prevalence of optic disc edema or other optic neuropathies in our OSA population. However, retinal vascular changes were more common in patients with severe OSA, independent of blood pressure.
Purpose: The goal of the present study is to provide an independent assessment of the retinal transcriptome signatures of C57BL/6J (B6) and DBA/2J (D2) mice, and to enhance existing microarray data sets for accurately defining the allelic differences in the BXD recombinant inbred strains. Methods: Retinas from B6 and D2 mice (three of each) were used for the RNA sequencing (RNA-seq) analysis. Transcriptome features were examined for both strains. Differentially expressed genes between the two strains were identified, and bioinformatic analysis was performed to analyze the transcriptome differences between the B6 and D2 strains, including Gene Ontology (GO) analysis, Phenotype and Reactome enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The RNA-seq data were then directly compared with one of the microarray data sets (Department of Defense [DoD] Retina Normal Affy MoGene 2.0 ST RMA Gene Level Microarray Database) hosted on GeneNetwork. Results: RNA-seq provided an in-depth analysis of the transcriptome of the B6 and D2 retinas with a total of more than 30,000,000 reads per sample. More than 70% of the reads were uniquely mapped, resulting in a total of 18,100 gene counts for all six samples. A total of 1,665 genes were differentially expressed, with 858 of these more highly expressed in the B6 retinas and 807 more highly expressed in the D2 retinas. Several molecular pathways were differentially active between the two strains, including the retinoic acid metabolic process, endoplasmic reticulum lumen, extracellular matrix (ECM) organization, and the PI3K-Akt signaling pathway. The most enriched KEGG pathways were the pentose and glucuronate interconversions pathway, the cytochrome P450 pathway, the protein digestion and absorption pathway, and the ECM-receptor interaction pathway. Each of these pathways had a more than fourfold enrichment. The DoD Normal Retina Microarray Database provided expression profiling for 26,191 annotated transcripts for B6 mouse, D2 mouse, and 53 BXD strains. A total of 13,793 genes in this microarray data set were comparable to the RNA-seq data set. For the B6 and D2 retinas, the RNA-seq data and the microarray data were highly correlated with each other (Pearson’s r=0.780 for the B6 mice and 0.784 for D2 mice). These results suggest that the microarray data set can reliably detect differentially expressed genes between the B6 and D2 retinas, with an overall accuracy of 91.1%. Examples of true positive and false positive genes are provided. Conclusions: Retinal transcriptome features of B6 and D2 mouse strains provide a useful reference for a better understanding of the mouse retina. Generally, the microarray database presented on GeneNetwork shows good agreement with the RNA-seq data, but we note that any allelic difference between B6 and D2 mice should be verified with the latter.
Background: Survival in metastasized cutaneous melanoma (CM) has been improved with the advent of inhibitors of immune checkpoints CTLA4 and PD-1. In contrast, the response rate for inhibition of these checkpoints in uveal melanoma (UM) is very low. Other checkpoints including IDO and TIGIT may be targetable. Methods: Sections from 6 patients with UM, who had undergone primary enucleation 1978—1995 and 6 paired liver metastases were stained immunohistochemically (SOX10, Melan-A, IDO, TIGIT, and CD8). Four tumors from patients who did not develop metastasis during a mean follow-up of 19 years, and 5 samples each of normal choroidal and liver tissue were included for comparison. The number of cells/mm2 expressing IDO, TIGIT and CD8 was counted with manual and digital image analysis methods. Retrospective data on patient and tumor characteristics was reviewed. Results: The number of TIGIT positive cells was significantly higher in primary tumors from patients who eventually developed metastases (mean 4695 cells/mm2) than from patients who didn't (mean 1342 cells/mm2, P < 0.01) and paired metastases (463 cells/mm2, P < 0.01). The number of IDO positive cells was not significantly higher in metastatic tumors (P = 0.079), but the number of IDO and TIGIT positive cells/mm2 correlated in both hot spots (R2 = 0.24, P < 0.01) and full tumor sections (R2 = 0.35, P < 0.01). Conclusion: The expression of immune checkpoint receptor TIGIT is increased in primary uveal melanomas that seed metastases, and correlates with the expression of checkpoint receptor IDO. Both may be future targets for therapy.