Neonatal aphakia is associated with retardation of the axial elongation of the neonatal eye. In contrast, form deprivation increases axial elongation, an effect that has been associated with decreased retinal dopamine metabolism. The present investigation was conducted to test the hypothesis that neonatal aphakia induces an effect on the levels of retinal dopamine opposite to form deprivation. Lensectomy and vitrectomy were performed on the right eyes of rhesus monkeys at approximately 1 week of age; their left eyes were unmanipulated. Axial length was measured by A-scan ultrasonography. Prior to surgery, mean axial length of the right and left eyes was identical. Following lens removal, both eyes continued to elongate, however the aphakic eyes elongated at a slower rate resulting in a significant shorter axial length compared to that of the unmanipulated eye. Removal of the crystalline lens had no effect on steady-state dopamine levels in either central or peripheral retina. However, levels of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid were significantly elevated in central retina, but not in the peripheral retina of aphakic eyes. Our results support the hypothesis that dopamine is a component of the retinal signaling pathways that are involved in the regulation of eye growth and emmetropization.
by
Jacob G. Light;
James W. Fransen;
Adewumi N. Adekunle;
Alice Adkins;
Gobinda Pangeni;
James Loudin;
Keith Mathieson;
Daniel V. Palanker;
Maureen A. McCall;
Machelle Pardue
Photovoltaic arrays (PVA) implanted into the subretinal space of patients with retinitis pigmentosa (RP) are designed to electrically stimulate the remaining inner retinal circuitry in response to incident light, thereby recreating a visual signal when photoreceptor function declines or is lost. Preservation of inner retinal circuitry is critical to the fidelity of this transmitted signal to ganglion cells and beyond to higher visual targets. Post-implantation loss of retinal interneurons or excessive glial scarring could diminish and/or eliminate PVA-evoked signal transmission. As such, assessing the morphology of the inner retina in RP animal models with subretinal PVAs is an important step in defining biocompatibility and predicting success of signal transmission. In this study, we used immunohistochemical methods to qualitatively and quantitatively compare inner retinal morphology after the implantation of a PVA in two RP models: the Royal College of Surgeons (RCS) or transgenic S334ter-line 3 (S334ter-3) rhodopsin mutant rat. Two PVA designs were compared. In the RCS rat, we implanted devices in the subretinal space at 4 weeks of age and histologically examined them at 8 weeks of age and found inner retinal morphology preservation with both PVA devices. In the S334ter-3 rat, we implanted devices at 6-12 weeks of age and again, inner retinal morphology was generally preserved with either PVA design 16-26 weeks post-implantation. Specifically, the length of rod bipolar cells and numbers of cholinergic amacrine cells were maintained along with their characteristic inner plexiform lamination patterns. Throughout the implanted retinas we found nonspecific glial reaction, but none showed additional glial scarring at the implant site. Our results indicate that subretinally implanted PVAs are well-tolerated in rodent RP models and that the inner retinal circuitry is preserved, consistent with our published results showing implant-evoked signal transmission.
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT 1 and MT 2 have been identified in the mammalian retina. MT 1 and MT 2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.
Retinal photoreceptors are important in visual signaling for normal eye growth in animals. We used Gnat2 cplf3/cplf3 (Gnat2 −/− ) mice, a genetic mouse model of cone dysfunction to investigate the influence of cone signaling in ocular refractive development and myopia susceptibility in mice. Refractive development under normal visual conditions was measured for Gnat2 −/− and age-matched Gnat2 +/+ mice, every 2 weeks from 4 to 14 weeks of age. Weekly measurements were performed on a separate cohort of mice that underwent monocular form-deprivation (FD) in the right eye from 4 weeks of age using head-mounted diffusers.
Refraction, corneal curvature, and ocular biometrics were obtained using photorefraction, keratometry and optical coherence tomography, respectively. Retinas from FD mice were harvested, and analyzed for dopamine (DA) and 3,4-dihydroxyphenylacetate (DOPAC) using high-performance liquid chromatography. Under normal visual conditions, Gnat2 +/+ and Gnat2 −/− mice showed similar refractive error, axial length, and corneal radii across development (p > 0.05), indicating no significant effects of the Gnat2 mutation on normal ocular refractive development in mice.
Three weeks of FD produced a significantly greater myopic shift in Gnat2 −/− mice compared to Gnat2 +/+ controls (−5.40 ± 1.33 D vs −2.28 ± 0.28 D, p = 0.042). Neither the Gnat2 mutation nor FD altered retinal levels of DA or DOPAC. Our results indicate that cone pathways needed for high acuity vision in primates are not as critical for normal refractive development in mice, and that both rods and cones contribute to visual signalling pathways needed to respond to FD in mammalian eyes.
Intraocular pressure (IOP) is a critical risk factor in glaucoma, and the available evidence derived from experimental studies in primates and rodents strongly indicates that the site of IOP-induced axonal damage in glaucoma is at the optic nerve head (ONH). However, the mechanisms that cause IOP-induced damage at the ONH are far from understood. A possible sequence of events could originate with IOP-induced stress in the ONH connective tissue elements (peripapillary sclera, scleral canal and lamina cribrosa) that leads to an increase in biomechanical strain. In consequence, molecular signaling cascades might be activated that result in extracellular matrix turnover of the peripapillary sclera, changing its biomechanical properties. Peripapillary sclera strain might induce reactive changes in ONH astrocytes and cause astrogliosis. The biological changes that are associated with ONH astrocyte reactivity could lead to withdrawal of trophic or metabolic support for optic nerve axons and cause their degeneration. Alternatively, the expression of neurotoxic molecules might be induced. Unfortunately, direct experimental in vivo evidence for these or other scenarios is currently lacking. The pathogenic processes that cause axonal degeneration at the ONH in glaucoma need to be identified before any regenerative therapy is likely to succeed. Several topics and emerging techniques should be pursued to enhance our understanding of the mechanisms that are behind axonal degeneration. Among them are: Advanced imaging techniques, the development of in vivo markers to identify axonal injury, the generation of molecular approaches for in vivo detection of mechanosensitivity and for molecular manipulation of the ONH, a more complete characterization of retinal ganglion cells, the use of organ cultures, 3D-bioprinting, and the engineering of microdevices that can measure pressure. Questions that need to be answered relate to the specific roles of astrogliosis, neuroinflammation, blood flow and intracranial pressure in axonal degeneration at the ONH.
The biomechanical environment within the eye is of interest in both the regulation of intraocular pressure and the loss of retinal ganglion cell axons in glaucomatous optic neuropathy. Unfortunately, this environment is complex and difficult to determine. Here we provide a brief introduction to basic concepts of mechanics (stress, strain, constitutive relationships) as applied to the eye, and then describe a variety of experimental and computational approaches used to study ocular biomechanics. These include finite element modeling, direct experimental measurements of tissue displacements using optical and other techniques, direct experimental measurement of tissue microstructure, and combinations thereof. Thanks to notable technical and conceptual advances in all of these areas, we are slowly gaining a better understanding of how tissue biomechanical properties in both the anterior and posterior segments may influence the development of, and risk for, glaucomatous optic neuropathy. Although many challenging research questions remain unanswered, the potential of this body of work is exciting; projects underway include the coupling of clinical imaging with biomechanical modeling to create new diagnostic tools, development of IOP control strategies based on improved understanding the mechanobiology of the outflow tract, and attempts to develop novel biomechanically-based therapeutic strategies for preservation of vision in glaucoma.
Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β2 (TGF-β2), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties.
Many types of retinal neuron modulate the distribution of their processes to ensure a uniform coverage of the retinal surface. Dendritic field area, for instance, is inversely related to the variation in cellular density for many cell types, observed either across retinal eccentricity or between different strains of mice that differ in cell number. Dopaminergic amacrine (DA) cells, by contrast, have dendritic arbors that bear no spatial relationship to the presence of their immediate homotypic neighbors, yet it remains to be determined whether their coverage upon the retina, as a population, is conserved across variation in their total number. The present study assessed the overall density of the dopaminergic plexus in the inner plexiform layer in the presence of large variation in the total number of DA cells, as well as their retinal dopamine content, to determine whether either of these features is conserved. We first compared these traits between two strains of mice (C57BL/6J and A/J) that exhibit a two-fold difference in DA cell number. We subsequently examined these same traits in littermate mice for which the pro-apoptotic Bax gene was either intact or knocked out, yielding a five-fold difference in DA cell number. In both comparisons, we found greater plexus density and DA content in the strain or condition with the greater number of DA cells. The population of DA cells, therefore, does not appear to self-regulate its process coverage to achieve a constant density as the DA mosaic is established during development, nor its functional dopamine content in maturity.
Low-level electrical stimulation to the eye has been shown to be neuroprotective against retinal degeneration in both human and animal subjects, using approaches such as subretinal implants and transcorneal electrical stimulation. In this study, we investigated the benefits of whole-eye electrical stimulation (WES) in a rodent model of retinitis pigmentosa. Transgenic rats with a P23H-1 rhodopsin mutation were treated with 30 min of low-level electrical stimulation (4 μA at 5 Hz; n = 10) or sham stimulation (Sham group; n = 15), twice per week, from 4 to 24 weeks of age. Retinal and visual functions were assessed every 4 weeks using electroretinography and optokinetic tracking, respectively. At the final time point, eyes were enucleated and processed for histology. Separate cohorts were stimulated once for 30 min, and retinal tissue harvested at 1 h and 24 h post-stimulation for real-time PCR detection of growth factors and inflammatory and apoptotic markers. At all time-points after treatment, WES-treated rat eyes exhibited significantly higher spatial frequency thresholds than untreated eyes. Inner retinal function, as measured by ERG oscillatory potentials (OPs), showed significantly improved OP amplitudes at 8 and 12 weeks post-WES compared to Sham eyes. Additionally, while photoreceptor segment and nuclei thicknesses in P23H-1 rats did not change between treatment groups, WES-treated eyes had significantly greater numbers of retinal ganglion cell nuclei than Sham eyes at 20 weeks post-WES. Gene expression levels of brain-derived neurotrophic factor (BDNF), caspase 3, fibroblast growth factor 2 (FGF2), and glutamine synthetase (GS) were significantly higher at 1 h, but not 24 h after WES treatment. Our findings suggest that WES has a beneficial effect on visual function in a rat model of retinal degeneration and that post-receptoral neurons may be particularly responsive to electrical stimulation therapy.
Corneal collagen crosslinking with riboflavin photosensitization and ultraviolet irradiation is a novel approach to limiting the progression of keratoconus in patients by increasing the elastic modulus of the degenerate cornea. Beneficial reductions in corneal steepness and aberrations after crosslinking also frequently occur. In a previous study, we described a computational modeling approach to simulating topographic progression in keratoconus and regression of disease with corneal collagen crosslinking. In the current study, this model has been expanded and applied to the inverse problem of estimating longitudinal time-dependent changes in the corneal elastic modulus after crosslinking using invivo measurements from 16 human eyes. Topography measured before crosslinking was used to construct a patient-specific finite element model with assumed hyperelastic properties. Then the properties of the cornea were altered using an inverse optimization method to minimize the difference between the model-predicted and invivo corneal shape after crosslinking. Effects of assumptions regarding sclera-to-cornea elastic modulus ratio and spatial attenuation of treatment effect due to ultraviolet beam characteristics on the predicted change in elastic modulus were also investigated. Corneal property changes computed by inverse finite element analysis provided excellent geometric agreement with clinical topography measurements in patient eyes post-crosslinking. Over all post-treatment time points, the estimated increase in corneal elastic modulus was 110.8±48.1%, and slightly less stiffening was required to produce the same amount of corneal topographic regression of disease when the sclera-to-cornea modulus ratio was increased. Including the effect of beam attenuation resulted in greater estimates of stiffening in the anterior cornea. Corneal shape responses to crosslinking varied considerably and emphasize the importance of a patient-specific approach.