Cyclic AMP signaling pathways play crucial roles in photoreceptor cells and other retinal cell types. Previous studies demonstrated a circadian rhythm of cyclic AMP level in chick photoreceptor cell cultures that drives the rhythm of activity of the melatonin synthesizing enzyme arylalkylamine N-acetyltransferase (Ivanova and Iuvone, 2003a) and the rhythm of affinity of the cyclic nucleotide-gated channel for cyclic GMP (Ko et al., 2004). Here we report that the photoreceptor circadian clock generates a rhythm in Ca2+/calmodulin-stimulated adenylyl cyclase activity, which accounts for the temporal changes in the cyclic AMP levels in the photoreceptors. The circadian rhythm of cyclic AMP in photoreceptor cell cultures is abolished by treatment with the L-type Ca2+ channel antagonist nitrendipine, while the Ca2+ channel agonist, Bay K 8644, increased cyclic AMP levels with continued circadian rhythmicity in constant darkness. These results indicate that the circadian rhythm of cyclic AMP is dependent, in part, on Ca2+ influx. Photoreceptor cell cultures exhibit a circadian rhythm in Ca2+/calmodulin-stimulated adenylyl cyclase enzyme activity with high levels at night and low levels during the day, correlating with the temporal changes of cyclic AMP in these cells. Both of the Ca2+/calmodulin-stimulated adenylyl cyclase genes, type 1 and type 8 (Adcy1 and Adcy8), displayed significant daily rhythms of mRNA expression under a light-dark cycle, but only the Adcy1 transcript rhythm persisted in constant darkness. Similar rhythms of Adcy1 mRNA level and Ca2+/calmodulin-stimulated adenylyl cyclase activity were observed in retinas of 2 week old chickens. These results indicate that a circadian clock controls the expression of Adcy1 mRNA and Ca2+/calmodulin-stimulated adenylyl cyclase activity; and calcium influx into these cells gates the circadian rhythm of cyclic AMP, a key component in the regulation of photoreceptor function.
by
Nikita Pozdeyev;
Carla Taylor;
Rashidul Haque;
Shyam S. Chaurasia;
Amy Visser;
Aamera Thazyeen;
Yuhong Du;
Haian Fu;
Joan Weller;
David C. Klein;
P Michael Iuvone
14-3-3 proteins are a ubiquitous, highly conserved family of chaperone proteins involved in signal transduction, regulation of cell cycle, intracellular trafficking/targeting, cytoskeletal structure, and transcription. Although 14-3-3 proteins are among the most abundant proteins in the CNS, very little is known about their functional roles in the vertebrate retina. In the present study, we demonstrated that photoreceptors express 14-3-3 protein(s) and identified a 14-3-3 binding partner in photoreceptor cells, the melatonin-synthesizing enzyme arylalkylamine N-acetyltransferase (AANAT). Importantly, our data demonstrate that the binding of 14-3-3 to AANAT is regulated by light, with dramatic functional consequences. During the night in darkness, retinal AANAT is phosphorylated and forms a complex with 14-3-3 proteins with an apparent molecular weight of ∼90 kDa. Phosphorylation of AANAT facilitates the binding of enzyme to 14-3-3 proteins. Within the complex, AANAT is catalytically activated and protected from dephosphorylation and degradation. Light disrupts the AANAT/14-3-3 complex, leading to catalytic inactivation, dephosphorylation, and proteolytic degradation of the enzyme. In the presence of the proteasome inhibitor, lactacystin, light results in the formation of a high molecular weight complex (>150 kDa), which may represent an intermediate in the AANAT degradation process. These findings provide new insight into the roles of 14-3-3 proteins in photoreceptor cells and to the mechanisms controlling melatonin synthesis in the vertebrate retina.
by
Rashidul Haque;
Nelson W. Chong;
Fatima Ali;
Shyam S. Chaurasia;
Trisha Sengupta;
Eugene Chun;
Jennifer Christina Howell;
David C. Klein;
P Michael Iuvone
Arylalkylamine N-acetyltransferase (AANAT) is the key regulatory enzyme controlling the daily rhythm of melatonin biosynthesis. In chicken retinal photoreceptor cells, Aanat transcription and AANAT activity are regulated in part by cAMP-dependent mechanisms. The purpose of this study was to identify regulatory elements within the chicken Aanat promoter responsible for cAMP-dependent induction. Photoreceptor-enriched retinal cell cultures were transfected with a luciferase reporter construct containing up to 4kb of 5′-flanking region and the first exon of Aanat. Forskolin treatment stimulated luciferase activity driven by the ~4kb promoter construct and by all 5′-deletion constructs except the smallest, Aanat (−217 to +120)luc. Maximal basal and forskolin-stimulated expression levels were generated by the Aanat (−484 to +120)luc construct. This construct lacks a canonical cyclic AMP-response element (CRE), but contains two other potentially important elements in its sequence: an eight times TTATT repeat (TTATT8) and a CRE-like sequence (CLS). Electrophoretic mobility shift assays (EMSA), luciferase reporter assays, chromatin immunoprecipitation, and siRNA experiments provide evidence that these elements bind c-Fos, JunD, and CREB to enhance basal and forskolin-stimulated Aanat transcription. We propose that the CLS and TTATT8 elements in the 484 bp proximal promoter interact to mediate cAMP-dependent transcriptional regulation of Aanat.
In the mammalian retina, dopamine binding to the dopamine D4 receptor affects a light-sensitive pool of cyclic AMP by negatively coupling to the type 1 adenylyl cyclase. The type 1 adenylyl cyclase is the primary enzyme controlling cyclic AMP production in dark-adapted photoreceptors. A previous study demonstrated that expression of the gene encoding the type 1 adenylyl cyclase, Adcy1, is down regulated in mice lacking Drd4, the gene encoding the dopamine D4 receptor. The present investigation provides evidence that dopamine D4 receptor activation entrains the circadian rhythm of Adcy1 mRNA expression. Diurnal and circadian rhythms of Drd4 and Adcy1 mRNA levels were observed in wild type mouse retina. Also, rhythms in the Ca2+-stimulated adenylyl cyclase activity and cyclic AMP levels were observed. However, these rhythmic activities were damped or undetectable in mice lacking the dopamine D4 receptor. Pharmacologically activating the dopamine D4 receptor 4 hrs before its normal stimulation at light onset in the morning advances the phase of the Adcy1 mRNA expression pattern. These data demonstrate that stimulating the dopamine D4 receptor is essential in maintaining the normal rhythmic production of the type 1 adenylyl cyclase from transcript to enzyme activity. Thus, dopamine/dopamine D4 receptor signaling is a novel zeitgeber that entrains the rhythm of Adcy1 expression and, consequently, modulates the rhythmic synthesis of cyclic AMP in mouse retina.