The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy - one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice - a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina.
by
Kenkichi Baba;
Ilaria Piano;
Polina Lyuboslavsky;
Micah A. Chrenek;
Jana T. Sellers;
Shuo Zhang;
Claudia Gargini;
Li He;
Gianluca Tosini;
P Michael Iuvone
The mammalian retina contains an autonomous circadian clock system that controls many physiological functions within this tissue. Previous studies on young mice have reported that removal of the key circadian clock gene Bmal1 from the retina affects the circadian regulation of visual function, but does not affect photoreceptor viability. Because dysfunction in the circadian system is known to affect cell viability during aging in other systems, we compared the effect of Bmal1 removal from the retina on visual function, inner retinal structure, and photoreceptor viability in young (1 to 3 months) and aged (24 to 26 months) mice. We found that removal of Bmal1 from the retina significantly affects visual information processing in both rod and cone pathways, reduces the thickness of inner retinal nuclear and plexiform layers, accelerates the decline of visual functions during aging, and reduces the viability of cone photoreceptors. Our results thus suggest that circadian clock dysfunction, caused by genetic or other means, may contribute to the decline of visual function during development and aging.
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT 1 and MT 2 have been identified in the mammalian retina. MT 1 and MT 2 receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The mammalian retina harbors a circadian clockwork that regulates vision and promotes healthiness of retinal neurons, mainly through directing the rhythmic release of the neurohormones dopamine—acting on dopamine D 4 receptors—and melatonin—acting on MT 1 and MT 2 receptors. The gene Gnaz—a unique Gi/o subfamily member—was seen in the present study to be expressed in photoreceptors where its protein product Gα z shows a daily rhythm in its subcellular localization. Apart from subcellular localization, Gnaz displays a daily rhythm in expression—with peak values at night—in preparations of the whole retina, microdissected photoreceptors and photoreceptor-related pinealocytes. In retina, Gnaz rhythmicity was observed to persist under constant darkness and to be abolished in retina deficient for Clock or dopamine D 4 receptors. Furthermore, circadian regulation of Gnaz was disturbed in the db/db mouse, a model of diabetic retinopathy. The data of the present study suggest that Gnaz links the circadian clockwork—via dopamine acting on D 4 receptors—to G protein-mediated signaling in intact but not diabetic retina.
The Per2luc mouse model developed by Takahashi laboratory is one of the most powerful models to study circadian rhythms in real time. In this study, we report that photoreceptors degenerate in male Per2luc mice during aging. Young (2.5- to 5-month-old) and aged (11- to 13.5-month-old) homozygous male Per2luc mice and C57BL/6J mice were used for this study. Retina structure and function were investigated via spectral domain optical coherence tomography (SD-OCT), fundus imaging, and electroretinography (ERG). Zonula occludens-1 (ZO-1) immunofluorescence was used to analyze the retinal pigment epithelium (RPE) morphology. Fundus examination revealed no difference between young Per2luc and wild-type (WT) mice. However, the fundus of aged Per2luc mice showed white deposits, suggestive of age-related drusen-like formation or microglia, which were absent in age-matched WT mice. No differences in retinal structure and function were observed between young Per2luc and WT mice. However, with age, Per2luc mice showed a significant reduction in total retinal thickness with respect to C57BL/6J mice. The reduction was mostly confined to the photoreceptor layer. Consistent with these results, we observed a significant decrease in the amplitude of a- and b-waves of the ERG in aged Per2luc mice. Analysis of the RPE morphology revealed that in aged Per2luc mice there was an increase in compactness and eccentricity with a decrease in solidity with respect to the values observed in WT, pointing toward signs of aging in the RPE of Per2luc mice. Our data demonstrate that homozygous Per2luc mice show photoreceptor degeneration during aging and a premature aging of the RPE.
by
Stefanie Kunst;
Tanja Wolloscheck;
Debra K. Kelleher;
Uwe Wolfrum;
S. Anna Sargsyan;
P Michael Iuvone;
Kenkichi Baba;
Gianluca Tosini;
Rainer Spessert
Purpose. The neurohormones melatonin and dopamine mediate clock-dependent/circadian regulation of inner retinal neurons and photoreceptor cells and in this way promote their functional adaptation to time of day and their survival. To fulfill this function they act on melatonin receptor type 1 (MT1 receptors) and dopamine D4 receptors (D4 receptors), respectively. The aim of the present study was to screen transcriptional regulators important for retinal physiology and/or pathology (Dbp, Egr-1, Fos, Nr1d1, Nr2e3, Nrial. Pgc-1α. Rorβ) for circadian regulation and dependence on melatonin signaling/MT1 receptors or dopamine signaling/D4 receptors. Methods. This was done by gene profiling using quantitative polymerase chain reaction in mice deficient in MT1 or D4 receptors. Results. The data obtained determined Pgc-1α and Nr4a1 as transcriptional targets of circadian melatonin and dopamine signaling. respectively. Conclusions. The results suggest that Pgc-1α and Nr4a1 represent candidate genes for linking circadian neurohormone release with functional adaptation and healthiness of retina and photoreceptor cells.
The diurnal peak of phagocytosis by the retinal pigment epithelium (RPE) of photoreceptor outer segments (POS) is under circadian control and believed that this process involves interactions from the retina and RPE. Previous studies have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE. Thereby, the aim of this study was to determine whether the clock in the retina or RPE controls the diurnal phagocytic peak and whether disruption of the circadian clock in the RPE would affect cellular function and the viability during aging. To that, we generated and validated an RPE tissue-specific KO of the essential clock gene, Bmal1, and then determined the daily rhythm in phagocytic activity by the RPE in mice lacking a functional circadian clock in the retina or RPE.
Then, using electroretinography, spectral domain-optical coherence tomography, and optomotor response of visual function we determined the effect of Bmal1 removal in young (6 months) and old (18 months) mice. RPE morphology and lipofuscin accumulation was determined in young and old mice. Our data shows that the clock in the RPE, rather than the retina clock, controls the diurnal phagocytic peak. Surprisingly, absence of a functional RPE clock and phagocytic peak does not result in any detectable age-related degenerative phenotype in the retina or RPE. Thus, our results demonstrate that the circadian clock in the RPE controls the daily peak of phagocytic activity. However, the absence of the clock in the RPE does not result in deterioration of photoreceptors or the RPE during aging.