Progression of Parkinson’s disease (PD) is highly variable, indicating that differences between slow and rapid progression forms could provide valuable information for improved early detection and management. Unfortunately, this represents a complex problem due to the heterogeneous nature of humans in regards to demographic characteristics, genetics, diet, environmental exposures and health behaviors. In this pilot study, we employed high resolution mass spectrometry-based metabolic profiling to investigate the metabolic signatures of slow versus rapidly progressing PD present in human serum. Archival serum samples from PD patients obtained within 3 years of disease onset were analyzed via dual chromatography-high resolution mass spectrometry, with data extraction by xMSanalyzer and used to predict rapid or slow motor progression of these patients during follow-up. Statistical analyses, such as false discovery rate analysis and partial least squares discriminant analysis, yielded a list of statistically significant metabolic features and further investigation revealed potential biomarkers. In particular, N8-acetyl spermidine was found to be significantly elevated in the rapid progressors compared to both control subjects and slow progressors. Our exploratory data indicate that a fast motor progression disease phenotype can be distinguished early in disease using high resolution mass spectrometry-based metabolic profiling and that altered polyamine metabolism may be a predictive marker of rapidly progressing PD.
In an ongoing effort to develop a renal tracer with pharmacokinetic properties comparable to PAH and superior to those of both 99mTc-MAG3 and 131I-OIH, we evaluated a new renal tricarbonyl radiotracer based on the aspartic-N-monoacetic acid ligand, 99mTc(CO)3(ASMA). The ASMA ligand features two carboxyl groups and an amine function for the coordination of the {99mTc(CO)3}+ core as well as a dangling carboxylate to facilitate rapid renal clearance.Methods
rac-ASMA and L-ASMA were labeled with a 99mTc-tricarbonyl precursor and radiochemical purity of the labeled products was determined by HPLC. Using 131I-OIH as an internal control, we evaluated biodistribution in normal rats with 99mTc(CO)3(ASMA) isomers and in rats with renal pedicle ligation with 99mTc(CO)3(rac-ASMA). Clearance studies were conducted in 4 additional rats. In vitro radiotracer stability was determined in PBS buffer pH 7.4 and in challenge studies with cysteine and histidine. 99mTc(CO)3(ASMA) metabolites in urine were analyzed by HPLC.
Results
Both 99mTc(CO)3(ASMA) preparations had > 99% radiochemical purity and were stable in PBS buffer pH 7.4 for 24 h. Challenge studies on both revealed no significant displacement of the ligand. In normal rats, % injected dose in urine at 10 and 60 min for both preparations averaged 103% and 106% that of 131I-OIH, respectively. The renal clearances of 99mTc(CO)3(rac-ASMA) and 131I-OIH were comparable (P = 0.48). The tracer was excreted unchanged in the urine, proving its in vivo stability. In pedicle-ligated rats, 99mTc(CO)3(rac-ASMA) had less excretion into the bowel (P < 0.05) and was better retained in the blood (P < 0.05) than 131I-OIH.
Conclusion
Both 99mTc(CO)3(ASMA) complexes have pharmacokinetic properties in rats comparable to or superior to those of 131I-OIH, and human studies are warranted for their further evaluation.
Calcineurin is a calcium-dependent, serine/threonine phosphatase that is involved in a variety of signaling pathways. Calcineurin is distinct among phosphatases because its activity requires calcium and is not sensitive to inhibition by compounds that block the related phosphatases PP1A and PP2A. Therefore, the most common methods to measure calcineurin activity rely on calcium-dependent dephosphorylation of a substrate derived from the RII subunit of protein kinase A in the presence of PP1A/PP2A inhibitors. However, current techniques quantify activity by measurement of released radioactive phosphate or detection of free phosphate with malachite green. Both methods involve technical challenges and have undesirable features. We report a new calcineurin fluorimetric assay that utilizes a fluorescently labeled phosphopeptide substrate and separation of dephosphorylated peptide product by titanium-oxide. The method is rapid, quantitative, involves no radioactivity and is suitable for high throughput assays. Furthermore, with the use of a standard curve, precise measurements of calcineurin activity can be obtained.
The Na+-Cl− cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na+ balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl−-dependent 22Na+ uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC.
Molecular areas of soluble films at the air/water interface have traditionally been calculated by applying the Gibbs equation to the steep linear decline in surface tension as the bulk concentration increases. This approach presupposes that the interface is saturated in the “Gibbs region,” thereby allowing a single unique area to be calculated. We show that the areas derived by the Gibbs equation (typically 50 – 60 Å2/molecule) are much too large to account for the abrupt surface tension decline. Moreover, a surface tension/concentration plot was observed for a system where micelle formation does not interfere with the Gibbs region. Nonetheless, the surface tension plot leveled off, ostensibly owing to saturation, when the Gibbs approach predicted a continued linear decline, proving that the interface in the Gibbs region is not saturated as generally assumed. This conclusion means that the hundreds of published molecular areas obtained by the Gibbs approach should be reconsidered.
Peptide TZ1C2 can populate two distinct orientations: a staggered (out-of-register) fibril and an aligned (in-register) coiled-coil trimer. The coordination of two cadmium ions induces a registry shift that results in a reversible transition between these structural forms. This process recapitulates the self-assembly mechanism of native protein fibrils in which a ligand binding event gates a reversible conformational transition between alternate forms of a folded peptide structure.
We report the computational enzyme design of an orthogonal nucleoside analog kinase for 3’-deoxythymidine. The best kinase variant shows a 8500-fold change in substrate specificity, resulting from a 4.6-fold gain in catalytic efficiency for the nucleoside analog and a 2000-fold decline for the native substrate thymidine.
Tandem carbonyl ylide formation-1,3-dipolar cycloaddition of α-diazo N-acetyl-tetrahydro-β-carbolin-1-one derivatives occur efficiently in the presence of a dirhodium catalyst to afford bimolecular cycloadducts in high yield. The Rh(II)-catalyzed reaction also takes place intramolecularly to give products derived from trapping of the carbonyl ylide dipole with a tethered alkene. The power of the intramolecular cascade sequence is that it rapidly assembles a pentacyclic ring system containing three new stereocenters and two adjacent quaternary centers stereospecifically in a single step and in high yield.
Plasmodium-infected erythrocytes have been shown to employ sphingolipids from both endogenous metabolism as well as existing host pools. Therapeutic agents that limit these supplies have thus emerged as intriguing, mechanistically distinct putative targets for the treatment of malaria infections. In an initial screen of our library of sphingolipid pathway modulators for efficacy against two strains of the predominant human malaria species Plasmodium falciparum and Plasmodium knowlesi, a series of orally available, 1-deoxysphingoid bases were found to possess promising in vitro antimalarial activity. To better understand the structural requirements that are necessary for this observed activity, a second series of modified analogues were prepared and evaluated. Initial pharmacokinetic assessments of key analogues were investigated to evaluate plasma and red blood cell concentrations in vivo.