OBJECTIVES::
Measurements of extravascular lung water (EVLW) correlate to the degree of pulmonary edema and have substantial prognostic information in critically ill patients. Prior studies using single indicator thermodilution have reported that 21% to 35% of patients with clinical acute respiratory distress syndrome (ARDS) have normal EVLW (<10 mL/kg). Given that lung size is independent of actual body weight, we sought to determine whether indexing EVLW to predicted or adjusted body weight affects the frequency of increased EVLW in patients with ARDS. DESIGN:: Prospective, observational cohort study. SETTING:: Medical and surgical intensive care units at two academic hospitals. PATIENTS:: Thirty patients within 72 hrs of meeting American-European Consensus Conference definition of ARDS and 14 severe sepsis patients without ARDS. INTERVENTIONS:: None. MEASUREMENT AND MAIN RESULTS:: EVLW was measured for 7 days by PiCCO transpulmonary thermodilution; 225 measurements of EVLW indexed to actual body weight (ActBW) were compared with EVLW indexed to predicted body weight (PBW) and adjusted body weight (AdjBW). Mean EVLW indexed to ActBW was 12.7 mg/kg for ARDS patients and 7.8 mg/kg for non-ARDS sepsis patients (p < .0001). In all patients, EVLW increased an average of 1.1 ± 2.1 mL/kg when indexed to AdjBW and 2.0 ± 4.1 mL/kg when indexed to PBW. Indexing EVLW to PBW or AdjBW increased the proportion of ARDS patients with elevated EVLW (each p < .05) without increasing the frequency of elevated EVLW in non-ARDS patients. EVLW indexed to PBW had a stronger correlation to Lung Injury Score (r = .39 vs. r = .17) and Pao2/Fio2 ratio (r = .25 vs. r = .10) than did EVLW indexed to ActBW. CONCLUSIONS:: Indexing EVLW to PBW or AdjBW reduces the number of ARDS patients with normal EVLW and correlates better to Lung Injury Score and oxygenation than using ActBW. Studies are needed to confirm the presumed superiority of this method for diagnosing ARDS and to determine the clinical treatment implications.
Rationale: Rifapentine-based regimens for treating latent tuberculosis infection (LTBI) are being considered for future clinical trials, but even if they prove effective, high drug costs may limit their economic viability. Objectives: To inform clinical trial design by estimating the potential costs and effectiveness of rifapentine-based regimens for treatment of latent tuberculosis infection (LTBI). Methods: We used a Markov model to estimate cost and societal benefits for three regimens for treating LTBI: Isoniazid/rifapentine daily for one month, isoniazid/rifapentine weekly for three months (self-administered and directly-observed), and isoniazid daily for nine months; a strategy of "no treatment" used for comparison. Costs, quality-adjusted life-years gained, and instances of active tuberculosis averted were calculated for all arms. Results: Both daily isoniazid/rifapentine for one month and weekly isoniazid/rifapentine for three months were less expensive and more effective than other strategies under a wide variety of clinically plausibly parameter estimates. Daily isoniazid/rifapentine for one month was the least expensive and most effective regimen. Conclusions: Daily isoniazid/rifapentine for one month and weekly isoniazid/rifapentine for three months should be studied in a large-scale clinical trial for efficacy. Because both regimens performed well even if their efficacy is somewhat reduced, study designers should consider relaxing non-inferiority boundaries.
Sickle cell disease (SCD) produces many structural and functional abnormalities in the kidney, including glomerular abnormalities. Albuminuria is the most common manifestation of glomerular damage, with a prevalence between 26 and 68% in adult patients. The pathophysiology of albuminuria in SCD is likely multifactorial, with contributions from hyperfiltration, glomerular hypertension, ischemia-reperfusion injury, oxidative stress, decreased nitric oxide (NO) bioavailability, and endothelial dysfunction. Although its natural history in SCD remains inadequately defined, albuminuria is associated with increased echocardiography-derived tricuspid regurgitant jet velocity, systemic blood pressure, and hypertension, as well as history of stroke, suggesting a shared vasculopathic pathophysiology. While most patients with albuminuria are treated with angiotensin converting enzyme inhibitors/angiotensin receptor blockers, there are no published long-term data on the efficacy of these agents. With the improved patient survival following kidney transplantation, SCD patients with end-stage renal disease should be considered for this treatment modality. Given the high prevalence of albuminuria and its association with multiple SCD-related clinical complications, additional studies are needed to answer several clinically important questions in a bid to adequately elucidate its pathophysiology, natural history, and treatment.
Transcatheter electrosurgery refers to a family of procedures using radiofrequency energy to vaporize and traverse or lacerate tissue despite flowing blood. The authors review theory, simulations, and benchtop demonstrations of how guidewires, insulation, adjunctive catheters, and dielectric medium interact. For tissue traversal, all but the tip of traversing guidewires is insulated to concentrate current. For leaflet laceration, the “Flying V” configuration concentrates current at the inner lacerating surface of a kinked guidewire. Flooding the field with non-ionic dextrose eliminates alternative current paths. Clinical applications include traversing occlusions (pulmonary atresia, arterial and venous occlusion, and iatrogenic graft occlusion), traversing tissue planes (atrial and ventricular septal puncture, radiofrequency valve repair, transcaval access, Potts and Glenn shunts), and leaflet laceration (BASILICA, LAMPOON, ELASTA-Clip, and others). Tips are provided for optimizing these techniques. Transcatheter electrosurgery already enables a range of novel therapeutic procedures for structural heart disease, and represents a promising advance toward transcatheter surgery.
by
Nancy S. Ghanayem;
Kerstin R. Allen;
Sarah Tabbutt;
Andrew M. Atz;
Martha Clabby;
David S. Cooper;
Piroozz Eghtesady;
Peter C. Frommelt;
Peter J. Gruber;
Kevin D. Hill;
Jonathan R. Kaltman;
Peter C. Laussen;
Alan B. Lewis;
Karen J. Lurito;
L. LuAnn Minich;
Richard G. Ohye;
Julie V. Schonbeck;
Steven M. Schwartz;
Rakesh K. Singh;
Caren S. Goldberg
Objective: For infants with single ventricle malformations undergoing staged repair, interstage mortality is reported at 2% to 20%. The Single Ventricle Reconstruction trial randomized subjects with a single morphologic right ventricle undergoing a Norwood procedure to a modified Blalock-Taussig shunt (MBTS) or a right ventricle-to-pulmonary artery shunt (RVPAS). The aim o f this analysis was to explore the associations of interstage mortality and shunt type, and demographic, anatomic, and perioperative factors. Methods: Participants in the Single Ventricle Reconstruction trial who survived to discharge after the Norwood procedure were included (n = 426). Interstage mortality was defined as death postdischarge after the Norwood procedure and before the stage II procedure. Univariate analysis and multivariable logistic regression were performed adjusting for site. Results: Overall interstage mortality was 50 of 426 (12%) - 13 of 225 (6%) for RVPAS and 37 of 201 (18%) for MBTS (odds ratio [OR] for MBTS, 3.4; P < .001). When moderate to severe postoperative atrioventricular valve regurgitation (AVVR) was present, interstage mortality was similar between shunt types. Interstage mortality was independently associated with gestational age less than 37 weeks (OR, 3.9; P = .008), Hispanic ethnicity (OR, 2.6; P = .04), aortic atresia/mitral atresia (OR, 2.3; P = .03), greater number of post-Norwood complications (OR, 1.2; P = .006), census block poverty level (P = .003), and MBTS in subjects with no or mild postoperative AVVR (OR, 9.7; P < .001). Conclusions: Interstage mortality remains high at 12% and is increased with the MBTS compared with the RVPAS if postoperative AVVR is absent or mild. Preterm delivery, anatomic, and socioeconomic factors are also important. Avoiding preterm delivery when possible and close surveillance after Norwood hospitalization for infants with identified risk factors may reduce interstage mortality.
Pulmonary hypertension (PH) is a progressive disorder of the pulmonary circulation associated with significant morbidity and mortality. The pathobiology of PH involves a complex series of derangements causing endothelial dysfunction, vasoconstriction and abnormal proliferation of pulmonary vascular wall cells that lead to increases in pulmonary vascular resistance and pressure. Recent evidence indicates that the ligand-activated transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) can have a favorable impact on a variety of pathways involved in the pathogenesis of PH. This review summarizes PPARγ biology and the emerging evidence that therapies designed to activate this receptor may provide novel approaches to the treatment of PH. Mediators of PH that are regulated by PPARγ are reviewed to provide insights into potential mechanisms underlying therapeutic effects of PPARγ ligands in PH.
Objectives High-dose vitamin D3increases plasma total 25-hydroxyvitamin D [25(OH)D] in critically ill, ventilated patients; however, to our knowledge, the effect on plasma levels of free (nonprotein-bound) 25(OH)D has not been investigated in critical illness. Moreover, the relationship of free 25(OH)D and the regulation of endogenous antimicrobial peptides (AMPs) remains unknown. The aims of this study were to determine in critically ill adults with respiratory failure the effect of previous high-dose regimens of vitamin D3on free 25(OH)D concentrations, the relationship of free 25(OH)D with circulating cathelicidin (LL-37) and human beta-defensin-2 (hBD-2), and the associations between plasma levels of free 25(OH)D and these AMPs to alveolar macrophage phagocytosis function. Methods In a double blind, randomized controlled trial, critically ill ventilator-dependent adults (N = 30) received enteral vitamin D3(250,000 or 500,000 IU total over 5 d) or placebo. Plasma was obtained serially for concentrations of free 25(OH)D, LL-37, hBD-2, and expression of peripheral blood mononuclear cell human cationic antimicrobial protein (hCAP18) mRNA. Total 25(OH)D and LL-37 concentrations and alveolar macrophage phagocytosis were determined in bronchoalveolar lavage fluid. Results Plasma concentrations of free 25(OH)D over time were correlated with total 25(OH)D levels (r= 0.82; P < 0.001). The increase in free 25(OH)D was greater with the 500 000 IU vitamin D3dose than with the lower dose. The percent change in mRNA expression of hCAP18 was positively associated with percent change in free 25(OH)D at days 7 and 14 (ρ = 0.48; P = 0.04 and ρ = 0.59; P = 0.03, respectively). Additionally, plasma LL-37 levels correlated with the percentage of alveolar macrophages exhibiting phagocytosis (ρ = 0.51; P = 0.04). Conclusions The present study found a dose-related increase in plasma free-25(OH)D levels, which was associated with increasing circulating mRNA expression of hCAP18 over time. There were no correlations between changes in total and free 25(OH)D against plasma LL-37 and hBD-2 concentrations. Larger studies appear warranted to determine the impact of high-dose vitamin D3administration on endogenous AMPs.
In recent years, evidence has increased that asthma predisposes to complications of sickle cell disease (SCD), such as pain crises, acute chest syndrome, pulmonary hypertension, and stroke, and is associated with increased mortality. An obstructive pattern of pulmonary function, along with a higher-than-expected prevalence of airway hyper-responsiveness (AHR) when compared to the general population, has led some researchers to suspect that underlying hemolysis may contribute to the development of a pulmonary disease similar to asthma in patients with SCD. While the pathophysiologic mechanism in atopic asthma involves up-regulation of Th2 cytokines, mast cell- and eosinophil-driven inflammation, plus increased activity of inducible nitric oxide synthase (iNOS) and arginase in airway epithelium resulting in obstructive changes and AHR, the exact mechanisms of AHR, obstructive and restrictive lung disease in SCD is unclear. It is known that SCD is associated with a proinflammatory state and an enhanced inflammatory response is seen during vaso-occlusive events (VOE). Hemolysis-driven acute-on-chronic inflammation and dysregulated arginine-nitric oxide metabolism are potential mechanisms by which pulmonary dysfunction could occur in patients with SCD. In patients with a genetic predisposition of atopic asthma, these changes are probably more severe and result in increased susceptibility to sickle cell complications. Early recognition and aggressive management of asthma based on established National Institutes of Health asthma guidelines is recommended in order to minimize morbidity and mortality.
Fructose-sweetened liquid consumption is associated with fatty liver and oxidative stress. In rodent models of fructose-mediated fatty liver, protein consumption is decreased. Additionally, decreased sulfur amino acid intake is known to cause oxidative stress. Studies were designed to test whether oxidative stress in fructose-sweetened liquid-induced fatty liver is caused by decreased ad libitum solid food intake with associated inadequate sulfur amino acid intake. C57BL6 mice were grouped as: control (ad libitum water), fructose (ad libitum 30% fructose-sweetened liquid), glucose (ad libitum 30% glucose-sweetened water) and pair-fed (ad libitum water and sulfur amino acid intake same as the fructose group). Hepatic and plasma thiol-disulfide antioxidant status were analyzed after five weeks. Fructose- and glucose-fed mice developed fatty liver. The mitochondrial antioxidant protein, thioredoxin-2, displayed decreased abundance in the liver of fructose and glucose-fed mice compared to controls. Glutathione/glutathione disulfide redox potential (E hGSSG) and abundance of the cytoplasmic antioxidant protein, peroxiredoxin-2, were similar among groups. We conclude that both fructose and glucose-sweetened liquid consumption results in fatty liver and upregulated thioredoxin-2 expression, consistent with mitochondrial oxidative stress; however, inadequate sulfur amino acid intake was not the cause of this oxidative stress.
by
Kaname Akamata;
Jun Wei;
Mitra Bhattacharyya;
Paul Cheresh;
Michael Y. Bonner;
Jack Arbiser;
Kirtee Raparia;
Mahesh P. Gupta;
David W. Kamp;
John Varga
Constitutive fibroblast activation is responsible for organ fibrosis in fibrotic disorders including systemic sclerosis (SSc), but the underlying mechanisms are not fully understood, and effective therapies are lacking. We investigated the expression of the mitochondrial deacetylase sirtuin 3 (SIRT3) and its modulation by hexafluoro, a novel fluorinated synthetic honokiol analogue, in the context of fibrosis. We find that augmenting cellular SIRT3 by forced expression in normal lung and skin fibroblasts, or by hexafluoro treatment, blocked intracellular TGF-β signaling and fibrotic responses, and mitigated the activated phenotype of SSc fibroblasts. Moreover, hexafluoro attenuated mitochondrial and cytosolic reactive oxygen species (ROS) accumulation in TGF-β-treated fibroblasts. Remarkably, we found that the expression of SIRT3 was significantly reduced in SSc skin biopsies and explanted fibroblasts, and was suppressed by TGF-β treatment in normal fibroblasts. Moreover, tissue levels of acetylated MnSOD, a sensitive marker of reduced SIRT3 activity, were dramatically enhanced in lesional skin and lung biopsies from SSc patients. Mice treated with hexafluoro showed substantial attenuation of bleomycin-induced fibrosis in the lung and skin. Our findings reveal a cell-autonomous function for SIRT3 in modulating fibrotic responses, and demonstrate the ability of a novel pharmacological SIRT3 agonist to attenuate fibrosis in vitro and in vivo. In light of the impaired expression and activity of SIRT3 associated with organ fibrosis in SSc, pharmacological approaches for augmenting SIRT3 might have therapeutic potential.