Parkinson's disease (PD) is the second most common movement disorder. The characteristic motor impairments - bradykinesia, rigidity, and resting tremor - result from degenerative loss of midbrain dopamine (DA) neurons in the substantia nigra, and are responsive to symptomatic treatment with dopaminergic medications and functional neurosurgery. PD is also the second most common neurodegenerative disorder. Viewed from this perspective, PD is a disorder of multiple functional systems, not simply the motor system, and of multiple neurotransmitter systems, not merely that of DA. The characteristic pathology - intraneuronal Lewy body inclusions and reduced numbers of surviving neurons - is similar in each of the targeted neuron groups, suggesting a common neurodegenerative process. Pathological and experimental studies indicate that oxidative stress, proteolytic stress, and inflammation figure prominently in the pathogenesis of PD. Yet, whether any of these mechanisms plays a causal role in human PD is unknown, because to date we have no proven neuroprotective therapies that slow or reverse disease progression in patients with PD. We are beginning to understand the pathophysiology of motor dysfunction in PD, but its etiopathogenesis as a neurodegenerative disorder remains poorly understood.
Aims
Arterial stiffening may lead to hypertension, greater left ventricular after-load and adverse clinical outcomes. The underlying mechanisms influencing arterial elasticity may involve oxidative injury to the vessel wall. We sought to examine the relationship between novel markers of oxidative stress and arterial elastic properties in healthy humans.
Methods & Results
We studied 169 subjects (mean age 42.6 ± 14 years, 51.6% male) free of traditional cardiovascular risk factors. Indices of arterial stiffness and wave reflections measured included carotid-femoral Pulse Wave Velocity (PWV), Augmentation index (Aix) and Pulse Pressure Amplification (PPA). Non-free radical oxidative stress was assessed as plasma oxidized and reduced amino-thiol levels (cysteine/cystine, glutathione/GSSG) and their ratios (redox potentials), and free radical oxidative stress as derivatives of reactive oxygen metabolites (dROMs). Inflammation was assessed as hsCRP and interleukin-6 levels.
The non-free radical marker of oxidative stress, cystine was significantly correlated with all arterial indices; PWV (r= 0.38, p<0.001), Aix (r=0.35, p<0.001) and PPA (r=−0.30, p<0.001). Its redox potential, was also associated with PWV (r=0.22, p=0.01), while the free radical marker of oxidative stress dROMS was associated with Aix (r=0.25, p<0.01). After multivariate adjustment for age, gender, arterial pressure, height, weight, heart rate and CRP, of these oxidative stress markers, only cystine remained independently associated with PWV (p=0.03), Aix (p=0.01) and PPA (p=0.05).
Conclusions
In healthy subjects without confounding risk factors or significant systemic inflammation, a high cystine level, reflecting extracellular oxidant burden, is associated with increased arterial stiffness and wave reflections. This has implications for understanding the role of oxidant burden in pre-clinical vascular dysfunction.
Background: Azelnidipine (AZL), a long-acting dihydropyridine-based calcium antagonist, has been recently approved and used for treating ischemic heart disease and cardiac remodeling after myocardial infarction, however, its effect on hyperglycemia-induced cardiac damage has not been studied.Methods: This study examined the effect of AZL on circulating markers of cardiac damage, altered lipid and cytokines profile and markers of oxidative stress including homocysteine in diabetic rats.Results: STZ induced diabetes caused a significant increase in blood glucose levels. It also resulted in an increase in the levels of homocysteine and cardiac damage markers, like Troponin-1, CK-MB, CK-NAC, uric acid, LDH and alkaline phosphatase. Moreover, there was an increase in the levels of proinflammatory cytokines like TNF-α, IFN-γ, and TGF-β and decrease in the levels of IL-4 and IL-10. Additionally, there was increase in the levels of cholesterol, triglycerides, LDL, VLDL and a decrease in HDL in these animals. There was an altered antioxidant enzyme profile which resulted in a notable increase in the levels of oxidative stress markers like lipid peroxides, nitric oxide and carbonylated proteins. Compared with the untreated diabetic rats, AZL treatment significantly reduced the levels of troponin-1 (P < 0.05), CK-MB (P < 0.05), CK-NAC (P < 0.05), uric acid (P < 0.05), LDH (P < 0.05) and alkaline phosphatase (P < 0.05). It also reduced the levels of the TNF-α (P < 0.05), IFN-γ (P < 0.05), and TGF-β (P < 0.05) and increased the levels of IL-4 (P < 0.05). A significant decrease in the serum cholesterol (P < 0.05), triglycerides (P < 0.05), LDL (P < 0.05), VLDL (P < 0.05) and a significant rise in levels of HDL (P < 0.05) was also observed. Treatment with AZL corrected the distorted antioxidant enzyme profile resulting in a significant decrease in the levels of lipid peroxides, nitric oxide and carbonylated proteins.Conclusion: Our results indicate that AZL treatment can reduce the risk of hyperglycemia induced metabolic disorders and its role can be further extended to explore its therapeutic potential in diabetic patients with cardiac complications.
Metazoan genomes encode exposure memory systems to enhance survival and reproductive potential by providing mechanisms for an individual to adjust during lifespan to environmental resources and challenges. These systems are inherently redox networks, arising during evolution of complex systems with O2 as a major determinant of bioenergetics, metabolic and structural organization, defense, and reproduction. The network structure decreases flexibility from conception onward due to differentiation and cumulative responses to environment (exposome). The redox theory of aging is that aging is a decline in plasticity of genome-exposome interaction that occurs as a consequence of execution of differentiation and exposure memory systems. This includes compromised mitochondrial and bioenergetic flexibility, impaired food utilization and metabolic homeostasis, decreased barrier and defense capabilities and loss of reproductive fidelity and fecundity. This theory accounts for hallmarks of aging, including failure to maintain oxidative or xenobiotic defenses, mitochondrial integrity, proteostasis, barrier structures, DNA repair, telomeres, immune function, metabolic regulation and regenerative capacity.
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend upon redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but non-equilibrium steady states, are largely independently regulated in different subcellular compartments and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.
The reduction potentials (Eh) for the redox couples GSH/GSSG and cysteine/cystine (Cys/CySS) in plasma are useful indicators of systemic oxidative stress and other medically relevant physiological states. This paper describes a sensitive method for determining plasma levels of GSH, GSSG, Cys and CySS used to calculate the in vivo Eh values. The method uses iodoacetate to alkylate free thiols; derivatization with dansyl chloride to fluorescently tag amino groups; and HPLC and fluorescence to separate, detect and quantify the molecules. Benefits of the method, such as sensitivity and dynamic range, are described; as are caveats, such as the importance of preventing red blood cell hemolysis and limitations in quantification of GSSG. General principles of redox chemistry and previous studies showing that the compounds are more oxidized than predicted from their standard reduction potentials are reviewed. The calculated in vivo reduction potential, Eh, is a convenient and informative way of summarizing the redox environment of plasma and is also useful for studies of cerebrospinal fluid, lymph, bronchoalveolar lavage fluid, human biopsies and a broad range of in vitro cell culture conditions.
Numerous sub-cellular through system-level disturbances have been identified in over 1300 articles examining the superoxide dismutase-1 guanine 93 to alanine (SOD1-G93A) transgenic mouse amyotrophic lateral sclerosis (ALS) pathophysiology. Manual assessment of such a broad literature base is daunting. We performed a comprehensive informatics-based systematic review or field analysis to agnostically compute and map the current state of the field. Text mining of recaptured articles was used to quantify published data topic breadth and frequency. We constructed a nine-category pathophysiological function-based ontology to systematically organize and quantify the field's primary data. Results demonstrated that the distribution of primary research belonging to each category is: systemic measures an motor function, 59%; inflammation, 46%; cellular energetics, 37%; proteomics, 31%; neural excitability, 22%; apoptosis, 20%; oxidative stress, 18%; aberrant cellular chemistry, 14%; axonal transport, 10%. We constructed a SOD1-G93A field map that visually illustrates and categorizes the 85% most frequently assessed sub-topics. Finally, we present the literature-cited significance of frequently published terms and uncover thinly investigated areas. In conclusion, most articles individually examine at least two categories, which is indicative of the numerous underlying pathophysiological interrelationships. An essential future path is examination of cross-category pathophysiological interrelationships and their co-correspondence to homeostatic regulation and disease progression.
Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development.
KGaA, Weinheim Protein–ligand interactions serve as fundamental regulators of numerous biological processes. Among protein–ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin–glycan interactions.
Alcoholic patients have an increased risk of respiratory infections, which is partially due to an impaired immune response of alveolar macrophages. The mechanisms by which alcohol impairs alveolar macrophage function are poorly understood. In this study, we demonstrated in a guinea pig model that chronic ethanol ingestion significantly impaired alveolar macrophage differentiation and function. Isolated alveolar macrophages were separated into 4 different subpopulations with varying densities and levels of maturation. Compared to control values, chronic ethanol ingestion decreased the percentage of alveolar macrophages in the mature fractions by ~60%. Alveolar macrophage function in each subpopulation was determined by measuring phagocytosis of FITC-labeled S. aureus. Alveolar macrophages from ethanol-fed animals had ~80% decrease in the phagocytic index. Western blot and immunohistochemical analysis of the differential markers GM-CSF receptor α (GM-CSFR-α), PU.1, CD11c, and CD11b verified that alcoholic macrophages displayed impaired terminal differentiation. While oral supplementation with the glutathione precursor S-adenosyl-methionine (SAM) did not alter the maturational status of control animals, SAM s supplementation shifted the distribution of macrophages to more mature fractions, normalized the phagocytic index; as well as normalized expression of CD11c, CD11b, PU.1, and GM-CSFR-α. Chronic ethanol ingestion also impaired the differentiation status of interstitial macrophages which was normalized by SAM supplementation. This improvement in the maturational status suggested that ethanol-induced oxidant stress is a central feature in impaired terminal differentiation of macrophages in the interstitial and alveolar space. Therefore, strategies targeting pulmonary oxidant stress may restore macrophage differentiation and function even after chronic ethanol ingestion.