Uremic cardiomyopathy is responsible for high morbidity and mortality rates among patients with chronic kidney disease (CKD), but the underlying mechanisms contributing to this complex phenotype are incompletely understood. Myocardial deformation analyses (ventricular strain) of patients with mild CKD have recently been reported to predict adverse clinical outcome. We aimed to determine if early myocardial dysfunction in a mouse model of CKD could be detected using ventricular strain analyses. CKD was induced in 5-week-old male 129X1/SvJ mice through partial nephrectomy (5/6Nx) with age-matched mice undergoing bilateral sham surgeries serving as controls. Serial transthoracic echocardiography was performed over 16 weeks following induction of CKD. Invasive hemodynamic measurements were performed at 8 weeks. Gene expression and histology was performed on hearts at 8 and 16 weeks. CKD mice developed decreased longitudinal strain (-25 ± 4.2% vs. -29 ± 2.3%; P = 0.01) and diastolic dysfunction (E/A ratio 1.2 ± 0.15 vs. 1.9 ± 0.18; P < 0.001) compared to controls as early as 2 weeks following 5/6Nx. In contrast, ventricular hypertrophy was not apparent until 4 weeks. Hearts from CKD mice developed progressive fibrosis at 8 and 16 weeks with gene signatures suggestive of evolving heart failure with elevated expression of natriuretic peptides. Uremic cardiomyopathy in this model is characterized by early myocardial dysfunction which preceded observable changes in ventricular geometry. The model ultimately resulted in myocardial fibrosis and increased expression of natriuretic peptides suggestive of progressive heart failure.
NBCn1 (SLC4A7) plays a role in transepithelial HCO3− movement and intracellular pH maintenance in many tissues. In this study, we searched PDZ proteins capable of binding to NBCn1. We screened a protein array membrane, on which 96 different class I PDZ protein peptides were blotted, with the C‐terminal domain of NBCn1 fused to GST. Thirteen proteins were identified in these screens: MAGI‐3, NHERF‐1, NHERF‐2, PSD‐95, chapsyn‐110, ERBIN, MALS‐1, densin‐180, syntrophins α1, β2, γ2, MUPP1, and PDZK1. After determining these binding partners, we analyzed the database of known and predicted protein interactions to obtain an NBCn1 interaction network. The network shows NBCn1 being physically and functionally associated with a variety of membrane and cytosolic proteins via the binding partners. We then focused on syntrophin γ2 to examine the molecular and functional interaction between NBCn1 and one of the identified binding partners in the Xenopus oocyte expression system. GST/NBCn1 pulled down syntrophin γ2 and conversely GST/syntrophin γ2 pulled down NBCn1. Moreover, syntrophin γ2 increased intracellular pH recovery, from acidification, mediated by NBCn1's Na/HCO3 cotransport. Syntrophin γ2 also increased an ionic conductance produced by NBCn1 channel‐like activity. Thus, syntrophin γ2 regulates NBCn1 activity. In conclusion, this study demonstrates that NBCn1 binds to many PDZ proteins, which in turn may allow the transporter to associate with other physiologically important proteins.
Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. The mouse has become the most common mammalian animal model used in biomedical research. However, laboratory techniques used previously in rats and other larger animals to sample blood had to be adapted in mice due to their lower mouse plasma volume. Sampling is further confounded by the variability in plasma hormone and metabolite concentrations that can occur from the stress or the anesthesia that accompanies the collection. In this article, we describe in detail a protocol we developed for blood sampling in conscious, unrestrained mice. Our protocol implements the use of chronic indwelling catheters in the right external jugular vein, allowing the mice to recover fully in their home cages, untethered until the time of blood sampling. This protocol employs catheters that remain patent for days and does not require the purchase of expensive equipment. We validated this protocol by measuring the time course of plasma norepinephrine (NE) concentration during and after the relief of acute immobilization stress in wild type (WT) and pendrin knockout (KO) mice and compared these results with our previously published values. We found that following relief from immobilization stress, it takes longer for plasma NE concentration to return to basal levels in the pendrin KO than in the wild type mice. These results highlight the potential utility of this protocol and the potential role of pendrin in the neuroendocrine response to acute stress.
Our understanding of the intrinsic effects of cystic fibrosis (CF) transmembrane conductance regulator (cftr) deletion on resident neonatal alveolar macrophage (AM) remains limited. We previously demonstrated that diminished glutathione (GSH) or excessive AM transforming growth factor beta one (TGFβ1) contributes to AM dysfunction in a variety of disease states. In this study, using a gut-corrected cftr neonatal knockout (KO) mouse model and a siRNA-manipulated macrophage-like cell line (THP-1 cell), we hypothesized (1) that cftr mutation alone increases neonatal AM oxidant stress and cellular TGFβ1 signaling via altered GSH, thereby impairing cellular function, and (2) that exogenous GSH attenuates AM alterations and dysfunction in the KO AM In neonatal KO mice, the baseline bronchoalveolar lavage fluid demonstrated a near doubling in mixed disulfides (P ≤ 0.05) and oxidized GSSG (P ≤ 0.05) without concurrent inflammation compared to WT littermates. KO AM demonstrated diminished AM thiols (P ≤ 0.05), increased AM mitochondrial ROS (P ≤ 0.05), increased AM TGFβ1 (P ≤ 0.05) with increased TGFβ1 signaling (P ≤ 0.05), and impaired phagocytosis (P ≤ 0.05). KO AM mitochondrial ROS was modulated by exogenous GSH (P ≤ 0.05). Conversely, TGFβ1 was reduced (P ≤ 0.05) and impaired phagocytosis was rescued (P ≤ 0.05) by exogenous GSH in the KO AM These results suggest that an altered neonatal AM phenotype may contribute to the initiation of lung inflammation/infection in the CF lung. Modulation of the AM in the neonatal CF lung may potentially alter progression of disease.
We studied the ability of typical unmyelinated cortical axons to conduct action potentials at fever-like temperatures because fever often gives CNS symptoms. We investigated such axons in cerebellar and hippocampal slices from 10 to 25 days old rats at temperatures between 30 and 43°C. By recording with two electrodes along axonal pathways, we confirmed that the axons were able to initiate action potentials, but at temperatures >39°C, the propagation of the action potentials to a more distal recording site was reduced. This temperature-sensitive conduction may be specific for the very thin unmyelinated axons because similar recordings from myelinated CNS axons did not show conduction failures. We found that the conduction fidelity improved with 1 mmol/L TEA in the bath, probably due to block of voltage-sensitive potassium channels responsible for the fast repolarization of action potentials. Furthermore, by recording electrically activated antidromic action potentials from the soma of cerebellar granule cells, we showed that the axons failed less if they were triggered 10–30 msec after another action potential. This was because individual action potentials were followed by a depolarizing after-potential, of constant amplitude and shape, which facilitated conduction of the following action potentials. The temperature-sensitive conduction failures above, but not below, normal body temperature, and the failure-reducing effect of the spike's depolarizing after-potential, are two intrinsic mechanisms in normal gray matter axons that may help us understand how the hyperthermic brain functions.
The purpose of this study was to test the hypothesis that downslope treadmill walking decreases spinal excitability. Soleus H-reflexes were measured in sixteen adults on 3 days. Measurements were taken before and twice after 20 min of treadmill walking at 2.5 mph (starting at 10 and 45 min post). Participants walked on a different slope each day [level (Lv), upslope (Us) or downslope (Ds)]. The tibial nerve was electrically stimulated with a range of intensities to construct the M-response and H-reflex curves. Maximum evoked responses (Hmax and Mmax) and slopes of the ascending limbs (Hslp and Mslp) of the curves were evaluated. Rate-dependent depression (RDD) was measured as the % depression of the H-reflex when measured at a rate of 1.0 Hz versus 0.1 Hz. Heart rate (HR), blood pressure (BP), and ratings of perceived exertion (RPE) were measured during walking. Ds and Lv walking reduced the Hmax/Mmax ratio (P = 0.001 & P = 0.02), although the reduction was larger for Ds walking (29.3 ± 6.2% vs. 6.8 ± 5.2%, P = 0.02). The reduction associated with Ds walking was correlated with physical activity level as measured via questionnaire (r = -0.52, P = 0.04). Us walking caused an increase in the Hslp/Mslp ratio (P = 0.03) and a decrease in RDD (P = 0.04). These changes recovered by 45 min. Exercise HR and BP were highest during Us walking. RPE was greater during Ds and Us walking compared to Lv walking, but did not exceed "Fairly light" for Ds walking. In conclusion, in healthy adults treadmill walking has a short-term effect on soleus H-reflex excitability that is determined by the slope of the treadmill surface.