Macrolide resistance in Streptococcus pneumoniae emerged in the U.S. and globally during the early 1990's. The RNA methylase encoded by erm(B) and the macrolide efflux genes mef(E) and mel were identified as the resistance determining factors. These genes are disseminated in the pneumococcus on mobile, often chimeric elements consisting of multiple smaller elements. To better understand the variety of elements encoding macrolide resistance and how they have evolved in the pre- and post-conjugate vaccine eras, the genomes of 121 invasive and ten carriage isolates from Atlanta from 1994 to 2011 were analyzed for mobile elements involved in the dissemination of macrolide resistance. The isolates were selected to provide broad coverage of the genetic variability of antibiotic resistant pneumococci and included 100 invasive isolates resistant to macrolides. Tn916-like elements carrying mef(E) and mel on the Macrolide Genetic Assembly (Mega) and erm(B) on the erm(B) element and Tn917 were integrated into the pneumococcal chromosome backbone and into larger Tn5253-like composite elements. The results reported here include identification of novel insertion sites for Mega and characterization of the insertion sites of Tn916-like elements in the pneumococcal chromosome and in larger composite elements. The data indicate that integration of elements by conjugation was infrequent compared to recombination. Thus, it appears that conjugative mobile elements allow the pneumococcus to acquire DNA from distantly related bacteria, but once integrated into a pneumococcal genome, transformation and recombination is the primary mechanism for transmission of novel DNA throughout the pneumococcal population.
Dengue poses a serious public health risk to nearly half the global population. It causes ~400 million infections annually and is considered to be one of the fastest spreading vector-borne diseases. Four distinct serotypes of dengue viruses (DENV-1, -2, -3, and -4) cause dengue disease, which may be either mild or extremely severe. Antibody-dependent enhancement (ADE), by pre-existing cross-reactive antibodies, is considered to be the major mechanism underlying severe disease. This mandates that a preventive vaccine must confer simultaneous and durable immunity to each of the four prevalent DENV serotypes. Recently, we used Pichia pastoris, to express recombinant DENV-2 E ectodomain, and found that it assembled into virus-like particles (VLPs), in the absence of prM, implicated in the elicitation of ADE-mediating antibodies. These VLPs elicited predominantly type-specific neutralizing antibodies that conferred significant protection against lethal DENV-2 challenge, in a mouse model. The current work is an extension of this approach to develop prM-lacking DENV-3 E VLPs. Our data reveal that P. pastoris-produced DENV-3 E VLPs not only preserve the antigenic integrity of the major neutralizing epitopes, but also elicit potent DENV-3 virus-neutralizing antibodies. Further, these neutralizing antibodies appear to be exclusively directed toward domain III of the DENV-3 E VLPs. Significantly, they also lack discernible ADE potential toward heterotypic DENVs. Taken together with the high productivity of the P. pastoris expression system, this approach could potentially pave the way toward developing a DENV E-based, inexpensive, safe, and efficacious tetravalent sub-unit vaccine, for use in resource-poor dengue endemic countries.
Staphylococcus aureus is a leading cause of hospital-acquired infections. It is listed among the top "serious threats" to human health in the USA, due in large part to rising rates of resistance. Many S. aureus infections are recalcitrant to antibiotic therapy due to their ability to form a biofilm, which acts not only as a physical barrier to antibiotics and the immune system, but results in differences in metabolism that further restricts antibiotic efficacy. Development of a modular strategy to synthesize a library of phenolic glycosides allowed for bioactivity testing and identification of anti-biofilm compounds within an extract of the elmleaf blackberry (Rubus ulmifolius). Two ellagic acid (EA) derivatives, EA xyloside and EA rhamnoside, have been identified as components of the Rubus extract. In addition, EA rhamnoside has been identified as an inhibitor of biofilm formation, with activity comparable to the complex extract 220D-F2 (composed of a mixture of EA glycosides), and confirmed by confocal laser scanning microscopy analyses.
Through the expression of the accessory gene regulator quorum sensing cascade, Staphylococcus aureus is able to produce an extensive array of enzymes, hemolysins and immunomodulators essential to its ability to spread through the host tissues and cause disease. Many have argued for the discovery and development of quorum sensing inhibitors (QSIs) to augment existing antibiotics as adjuvant therapies. Here, we discuss the state-of-the-art tools that can be used to conduct screens for the identification of such QSIs. Examples include fluorescent reporters, MS-detection of autoinducing peptide production, agar plate methods for detection of hemolysins and lipase, High performance liquid chromatography-detection of hemolysins from supernatants, and cell-toxicity assays for detecting damage (or relief thereof) against human keratinocyte cells. In addition to providing a description of these various approaches, we also discuss their amenability to low-, medium-, and high-throughput screening efforts for the identification of novel QSIs.