Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes.
Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development.
Atherosclerosis occurs preferentially in arterial regions exposed to disturbed blood flow. Targeting these pro-atherogenic regions is a potential anti-atherogenic therapeutic approach, but it has been extremely challenging. Here, using in vivo phage display approach and the partial carotid ligation model of flow-induced atherosclerosis in mouse, we identified novel peptides that specifically bind to endothelial cells (ECs) exposed to disturbed flow condition in pro-atherogenic regions. Two peptides, CLIRRTSIC and CPRRSHPIC, selectively bound to arterial ECs exposed to disturbed flow not only in the partially ligated carotids but also in the lesser curvature and branching point of the aortic arch in mice as well as human pulmonary artery branches. Peptides were conjugated to branched polyethylenimine-polyethylene glycol polymer to generate polyplexes carrying siRNA targeting intercellular adhesion molecule-1 (siICAM-1). In mouse model, CLIRRTSIC polyplexes carrying si-ICAM-1 specifically bound to endothelium in disturbed flow regions, reducing endothelial ICAM-1 expression. Mass spectrometry analysis revealed that non-muscle myosin heavy chain II A (NMHC IIA) is a protein targeted by CLIRRTSIC peptide. Further studies showed that shear stress regulates NMHC IIA expression and localization in ECs. The CLIRRTSIC is a novel peptide that could be used for targeted delivery of therapeutics such as siRNAs to pro-atherogenic endothelium.
Background: The pathomechanisms of atherosclerosis and vascular remodelling are under intense research. Only a few in vivo tools to study these processes longitudinally in animal experiments are available. Here, we evaluated the potential of micro-CT technology. Methods: Lumen areas of the common carotid arteries (CCA) in the ApoE<sup>-/-</sup> partial carotid artery ligation mouse model were compared between in vivo and ex vivo micro-CT technique and serial histology in a total of 28 animals. AuroVist-15 nm nanoparticles were used as in vivo blood pool contrast agent in a Skyscan 1176 micro-CT at resolution of 18 μmeter voxel size and a mean x-ray dose of 0.5 Gy. For ex vivo imaging, animals were perfused with MicroFil and imaged at 9 μmeter voxel size. Lumen area was evaluated at postoperative days 7, 14, and 28 first by micro-CT followed by histology. Results: In vivo micro-CT and histology revealed lumen loss starting at day 14. The lumen profile highly correlated (r = 0.79, P<0.0001) between this two methods but absolute lumen values obtained by histology were lower than those obtained by micro-CT. Comparison of in vivo and ex vivo micro-CT imaging revealed excellent correlation (r = 0.83, P<0.01). Post mortem micro-CT yielded a higher resolution than in vivo micro-CT but there was no statistical difference of lumen measurements in the partial carotid artery ligation model. Conclusion: These data demonstrate that in vivo micro-CT is a feasible and accurate technique with low animal stress to image remodeling processes in the murine carotid artery.
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), in part, due to alterations in gene expression in the endothelium. While numerous in vitro studies have shown how anti-atherogenic flow and pro-atherogenic flow differently regulate gene expression of cultured endothelial cells, similar in vivo studies have been scarce. Recently, we developed a mouse model of atherosclerosis that rapidly develops robust atherosclerosis by partially ligating the left carotid artery (LCA) branches, while using the contralateral right carotid (RCA) as control. We also developed a novel method to collect endothelial-enriched RNAs from the carotids of these animals, which enabled us to perform genome-wide expression analyses of mRNAs and miRNAs in the arterial endothelium exposed to either d-flow or s-flow. These microarray results were used to identify novel mechanosensitive genes such as DNA methyltransferase-1 and miR-712 that play key roles in atherosclerosis. Here, we report these endothelial mRNA and miRNA expression profiles with in-depth information on experimental procedures along with an example of usage of these data.
ZBTB46 is a transcription factor identified in classical dendritic cells and keeps dendritic cells in a quiescent state. Chromatin immunoprecipitation sequencing in dendritic cells has identified over 1300 potential gene targets of ZBTB46, affecting many processes including cell cycle. Endothelial cells (ECs) also express ZBTB46 and are mostly in a quiescent non-proliferative state. While EC proliferation is a critical process in development, dysregulation of EC proliferation as seen in areas of disturbed flow play an important role in many disease processes such as atherosclerosis, pulmonary hypertension, transplant vasculopathy, neointimal hyperplasia, and in-stent restenosis. We studied the role of ZBTB46 in ECs, hypothesizing that it inhibits EC proliferation. Using a model of disturbed flow in mice, we found that ZBTB46 is expressed in murine arterial ECs in vivo, and is downregulated by disturbed flow. In vitro results using HAECs showed that cell confluence and laminar shear stress, both known physiological conditions promoting EC quiescence, led to upregulation of ZBTB46 expression. Adenoviral-mediated overexpression of ZBTB46 in vitro caused reduced EC proliferation, and increased number of cells in the G 0 /G 1 phase of cell cycle, without affecting apoptosis or senescence, while siRNA knockdown of ZBTB46 negated the known inhibitory role of unidirectional laminar shear stress on EC proliferation. ZBTB46 overexpression also led to a broad suppression of genes involved in cell cycle progression including multiple cyclins and cyclin-dependent kinases, but an increase in the CDK inhibitor CDKN1A. Phosphorylation of the retinoblastoma protein was also decreased as assessed by Western blot. Tube formation on Matrigel was reduced, suggesting an inhibitory role for ZBTB46 in angiogenesis. Further research is required to investigate the potential role of ZBTB46 in specific pathologic conditions and whether it can be targeted in a therapeutic manner.
Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 &7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFβ1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFβ1.
by
Dong Hoon Kang;
Mina Choi;
Soyoung Chang;
Min Young Lee;
Doo Jae Lee;
Kyungsun Choi;
Junseong Park;
Eun Chun Han;
Daehee Hwang;
Kihwan Kwon;
Hanjoong Jo;
Chulhee Choi;
Sang Won Kang
Neointimal hyperplasia of vascular smooth muscle cells (VSMC) plays a critical role in atherosclerotic plaque formation and in-stent restenosis, but the underlying mechanisms are still incompletely understood. We performed a proteomics study to identify novel signaling molecules organizing the VSMC hyperplasia. The differential proteomics analysis in a balloon-induced injury model of rat carotid artery revealed that the expressions of 44 proteins are changed within 3 days post injury. The combination of cellular function assays and a protein network analysis further demonstrated that 27 out of 44 proteins constitute key signaling networks orchestrating the phenotypic change of VSMC from contractile to epithelial-like synthetic. Among the list of proteins, the in vivo validation specifically revealed that six proteins (Rab15, ITR, OLR1, PDHβ, PTPε) are positive regulators for VSMC hyperplasia. In particular, the OLR1 played dual roles in the VSMC hyperplasia by directly mediating oxidized LDL-induced monocyte adhesion via NF-κB activation and by assisting the PDGF-induced proliferation/migration. Importantly, OLR1 and PDGFRβ were associated in close proximity in the plasma membrane. Thus, this study elicits the protein network organizing the phenotypic change of VSMC in the vascular injury diseases such as atherosclerosis and discovers OLR1 as a novel molecular link between the proliferative and inflammatory responses of VSMCs.
Oxidative stress occurs with disturbed blood flow, inflammation and cardiovascular disease (CVD), yet free-radical scavenging antioxidants have shown limited benefit in human CVD. Thioredoxin-1 (Trx1) is a thiol antioxidant protecting against non-radical oxidants by controlling protein thiol/disulfide status; Trx1 translocates from cytoplasm to cell nuclei due to stress signaling, facilitates DNA binding of transcription factors, e.g., NF-κB, and potentiates inflammatory signaling. Whether increased nuclear Trx1 contributes to proatherogenic signaling is unknown.