Serotonin (5-HT) plays an important role in shaping the activity of the spinal networks underlying locomotion in many vertebrate preparations. At larval stages in zebrafish, 5-HT does not change the frequency of spontaneous swimming; and it only decreases the quiescent period between consecutive swimming episodes. However, it is not known whether 5-HT exerts similar actions on the locomotor network at later developmental stages. For this, the effect of 5-HT on the fictive locomotor pattern of juvenile and adult zebrafish was analyzed. Bath-application of 5-HT (1-20 μM) reduced the frequency of the NMDA-induced locomotor rhythm. Blocking removal from the synaptic cleft with the reuptake inhibitor citalopram had similar effects, suggesting that endogenous serotonin is modulating the locomotor pattern. One target for this modulation was the mid-cycle inhibition during locomotion because the IPSPs recorded in spinal neurons during the hyperpolarized phase were increased both in amplitude and occurrence by 5-HT. Similar results were obtained for IPSCs recorded in spinal neurons clamped at the reversal potential of excitatory currents (0 mV). 5-HT also slows down the rising phase of the excitatory drive recorded in spinal cord neurons when glycinergic inhibition is blocked. These results suggest that the decrease in the locomotor burst frequency induced by 5-HT is mediated by a potentiation of mid-cycle inhibition combined with a delayed onset of the subsequent depolarization.
Sex ratio distortion (sex-ratio for short) has been reported in numerous species such as Drosophila, where distortion can readily be detected in experimental crosses, but the molecular mechanisms remain elusive. Here we characterize an autosomal sex-ratio suppressor from D. simulans that we designate as not much yang (nmy, polytene chromosome position 87F3). Nmy suppresses an X-linked sex-ratio distorter, contains a pair of near-perfect inverted repeats of 345 bp, and evidently originated through retrotransposition from the distorter itself. The suppression is likely mediated by sequence homology between the suppressor and distorter. The strength of sex-ratio is greatly enhanced by lower temperature. This temperature sensitivity was used to assign the sex-ratio etiology to the maturation process of the Y-bearing sperm, a hypothesis corroborated by both light microscope observations and ultrastructural studies. It has long been suggested that an X-linked sex-ratio distorter can evolve by exploiting loopholes in the meiotic machinery for its own transmission advantage, which may be offset by other changes in the genome that control the selfish distorter. Data obtained in this study help to understand this evolutionary mechanism in molecular detail and provide insight regarding its evolutionary impact on genomic architecture and speciation.
Parasites can impose strong selection on hosts. In response, some host populations have
adapted via the evolution of defenses that prevent or impede infection by parasites. However,
host populations have also evolved life history shifts that maximize host fitness despite
infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories
of host populations. While selfing and outcrossing are known to affect the rate at
which host populations adapt in response to parasites, these mating systems may also influence
the specific traits that underlie adaptation to parasites. Here, we determined the role of
evolved host defense versus altered life history,in mixed mating (selfing and outcrossing)
and obligately outcrossing C. elegans host populations after experimental evolution with the
bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed
mating and obligately outcrossing host populations adapted to S. marcescens exposure,
and that the obligately outcrossing populations exhibited the greatest rates of adaptation.
Regardless of the host population mating system, exposure to parasites did not significantly
alter reproductive timing or total fecundity over the course of experimental evolution. However,
both mixed mating and obligately outcrossing host populations exhibited significantly
reduced mortality rates in the presence of the parasite after experimental evolution. Therefore,
adaptation in both the mixed mating and obligately outcrossing populations was driven,
at least in part, by the evolution of increased host defense and not changes in host life history.
Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive
change in the host populations.
Neuronal networks produce reliable functional output throughout the lifespan of an animal despite ceaseless molecular turnover and a constantly changing environment. Central pattern generators, such as that of the crustacean stomatogastric ganglion (STG), robustly maintain their functionality over a wide range of burst periods [1]. Extracellular recordings of the LP neuron of the STG have demonstrated that as the burst period varies over time, the interspike intervals change proportionally, so that the spike phases are relatively invariant.
Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved.
Studying ion channel currents generated distally from the recording site is difficult because of artifacts caused by poor space clamp and membrane filtering. A computational model can quantify artifact parameters for correction by simulating the currents only if their exact anatomical location is known. We propose that the same artifacts that confound current recordings can help pinpoint the source of those currents by providing a signature of the neuron’s morphology. This method can improve the recording quality of currents initiated at the spike initiation zone (SIZ) that are often distal to the soma in invertebrate neurons. Drosophila being a valuable tool for characterizing ion currents, we estimated the SIZ location and quantified artifacts in an identified motoneuron, aCC/MN1-Ib, by constructing a novel multicompartmental model. Initial simulation of the measured biophysical channel properties in an isopotential Hodgkin-Huxley type neuron model partially replicated firing characteristics. Adding a second distal compartment, which contained spike-generating Na+ and K+ currents, was sufficient to simulate aCC’s in vivo activity signature. Matching this signature using a reconstructed morphology predicted that the SIZ is on aCC’s primary axon, 70 μm after the most distal dendritic branching point. From SIZ to soma, we observed and quantified selective morphological filtering of fast activating currents. Non-inactivating K+ currents are filtered ∼3 times less and despite their large magnitude at the soma they could be as distal as Na+ currents. The peak of transient component (NaT) of the voltage-activated Na+ current is also filtered more than the magnitude of slower persistent component (NaP), which can contribute to seizures. The corrected NaP/NaT ratio explains the previously observed discrepancy when the same channel is expressed in different cells. In summary, we used an in vivo signature to estimate ion channel location and recording artifacts, which can be applied to other neurons.
Neuronal network modeling and experiments indicate that the same physiologically relevant patterns of the network activity can be observed for quite different sets of neuronal parameters. These findings imply that parameters, each of which affects network functionality, co-vary in real networks; i.e. the variations of these parameters must be concordant. Finding such concordant variations can advance our understanding on how the properties of individual neurons determine network functionality. In particular, they may explain variability of neuronal parameters observed in living systems, and show possible paths for homeostatic regulation.
by
Alexandra W. Fuller;
Phoebe Young;
B. DanieL Pierce;
Jamie Kitson-Finuff;
Purvi Jain;
Karl Schneider;
Stephen Lazar;
Olga Taran;
Andrew G. Palmer;
David Lynn
The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere’s chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs). The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS) production regulates similar redox circuits related to root recognition, broadening xenognosins’ role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ) between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction-diffusion network laying the foundation for the precise temporal and spatial control underlying rhizosphere architecture.
by
Virginia J. Vitzthum;
Carol Worthman;
Cynthia M. Beall;
Jonathan Thornburg;
Enrique Vargas;
Mercedes Villena;
Rudy Soria;
Esperanza Caceres;
Hilde Spielvogel
Testosterone (T) plays a key role in the increase and maintenance of muscle mass and bone density in adult men. Life history theory predicts that environmental stress may prompt a reallocation of such investments to those functions critical to survival. We tested this hypothesis in two studies of rural Bolivian adult men by comparing free T levels and circadian rhythms during late winter, which is especially severe, to those in less arduous seasons. For each pair of salivary TAM/TPM samples (collected in a ~12-hour period), circadian rhythm was considered classic (CCLASSIC) if TAM>110%TPM, reverse (CREVERSE) if TPM>110%TAM, and flat (CFLAT) otherwise. We tested the hypotheses that mean TAM>mean TPM and that mean TLW<mean TOTHER (LW=late winter, OTHER=other seasons). In Study A, of 115 TPM-TAM pairs, 51%=CCLASSIC, 39%=CREVERSE, 10%=CFLAT; in Study B, of 184 TAM-TPM pairs, 55%=CCLASSIC, 33%=CREVERSE, 12%=CFLAT. Based on fitting linear mixed models, in both studies TOTHER-AM>TOTHER-PM (A: p=0.035, B: p=0.0005) and TOTHER-AM>TLW-AM (A: p=0.054, B: p=0.007); TPM did not vary seasonally, and T diurnality was not significant during late winter. T diurnality varied substantially between days within an individual, between individuals and between seasons, but neither T levels nor diurnality varied with age. These patterns may reflect the seasonally varying but unscheduled, life-long, strenuous physical labor that typifies many non-industrialized economies. These results also suggest that single morning samples may substantially underestimate peak circulating T for an individual and, most importantly, that exogenous signals may moderate diurnality and the trajectory of age-related change in the male gonadal axis.