Our species’ long childhood is hypothesized to have evolved as a period for learning complex foraging skills. Researchers studying the development of foraging proficiency have focused on assessing this hypothesis, yet studies present inconsistent conclusions regarding the connection between foraging skill development and niche complexity. Here, we leverage published records of child and adolescent foragers from 28 societies to (i) quantify how skill-intensive different resources are and (ii) assess whether children’s proficiency increases more slowly for more skill-intensive resources. We find that foraging returns increase slowly for more skill-intensive, difficult-to-extract resources (tubers and game), consistent with peak productivity attained in adulthood. Foraging returns for easier-to-extract resources (fruit and fish/shellfish) increase rapidly during childhood, with adult levels of productivity reached by adolescence. Our findings support the view that long childhoods evolved as an extended period for learning to extract complex resources characteristic of the human foraging niche.
We thank Vonk (1) for her interest in our paper (2) in PNAS. We appreciate her concerns; however, several comments in her Letter are already discussed and supported by data in our paper. We thus respectfully disagree with her claims about the limitations of our study and theoretical interpretation.
by
Angela R Garcia;
Caleb Finch;
Margaret Gatz;
Thomas Kraft;
Daniel Eid Rodriguez;
Daniel Cummings;
Mia Charifson;
Kenneth Buetow;
Bret A Beheim;
Hooman Allayee;
Gregory S Thomas;
Jonathan Stieglitz;
Michael D Gurven;
Hilard Kaplan;
Benjamin C Trumble
In post-industrial settings, apolipoprotein E4 (APOE4) is associated with increased cardiovascular and neurological disease risk. However, the majority of human evolutionary history occurred in environments with higher pathogenic diversity and low cardiovascular risk. We hypoth-esize that in high-pathogen and energy-limited contexts, the APOE4 allele confers benefits by reducing innate inflammation when uninfected, while maintaining higher lipid levels that buffer costs of immune activation during infection. Among Tsimane forager-farmers of Bolivia (N = 1266, 50 % female), APOE4 is associated with 30 % lower C-reactive protein, and higher total cholesterol and oxidized LDL. Blood lipids were either not associated, or negatively associated with inflammatory biomarkers, except for associations of oxidized LDL and inflammation which were limited to obese adults. Further, APOE4 carriers maintain higher levels of total and LDL cholesterol at low body mass indices (BMIs). These results suggest that the relationship between APOE4 and lipids may be bene-ficial for pathogen-driven immune responses and unlikely to increase cardiovascular risk in an active subsistence population.
Humans often experience striking performance deficits when their outcomes are determined by their own performance, colloquially referred to as “choking under pressure.” Physiological stress responses that have been linked to both choking and thriving are well-conserved in primates, but it is unknown whether other primates experience similar effects of pressure. Understanding whether this occurs and, if so, its physiological correlates, will help clarify the evolution and proximate causes of choking in humans. To address this, we trained capuchin monkeys on a computer game that had clearly denoted high- and low-pressure trials, then tested them on trials with the same signals of high pressure, but no difference in task difficulty. Monkeys significantly varied in whether they performed worse or better on high-pressure testing trials and performance improved as monkeys gained experience with performing under pressure. Baseline levels of cortisol were significantly negatively related to performance on high-pressure trials as compared to low-pressure trials. Taken together, this indicates that less experience with pressure may interact with long-term stress to produce choking behavior in early sessions of a task. Our results suggest that performance deficits (or improvements) under pressure are not solely due to human specific factors but are rooted in evolutionarily conserved biological factors.
by
Adrian Jaeggi;
Aaron D Blackwell;
Christopher Von Rueden;
Benjamin C Trumble;
Jonathan Stieglitz;
Angela R Garcia;
Thomas S Kraft;
Bret A Beheim;
Paul L Hooper;
Hillard Kaplan;
Michael Gurven
In high-income countries, one’s relative socio-economic position and economic inequality may affect health and well-being, arguably via psychosocial stress. We tested this in a small-scale subsistence society, the Tsimane, by associating relative household wealth (n = 871) and community-level wealth inequality (n = 40, Gini = 0.15-0.53) with a range of psychological variables, stressors, and health outcomes (depressive symptoms [n = 670], social conflicts [n = 401], non-social problems [n = 398], social support [n = 399], cortisol [n = 811], body mass index [n = 9,926], blood pressure [n = 3,195], self-rated health [n = 2523], morbidities [n = 1542]) controlling for community-average wealth, age, sex, household size, community size, and distance to markets. Wealthier people largely had better outcomes while inequality associated with more respiratory disease, a leading cause of mortality. Greater inequality and lower wealth were associated with higher blood pressure. Psychosocial factors did not mediate wealth-health associations. Thus, relative socio-economic position and inequality may affect health across diverse societies, though this is likely exacerbated in high-income countries.
by
Emily J Levy;
Laurence R Gesquiere;
Emily McLean;
Mathias Franz;
Kinyua J Warutere;
Serah N Sayialel;
Raphael S Mututua;
Tim L Wango;
Vivian K Oudu;
Jeanne Altmann;
Elizabeth A Archie;
Susan C Alberts
In vertebrates, glucocorticoid secretion occurs in response to energetic and psychosocial stressors that trigger the hypothalamic-pituitary-adrenal (HPA) axis. Measuring glucocorticoid concentrations can therefore shed light on the stressors associated with different social and environmental variables, including dominance rank. Using 14,172 fecal samples from 237 wild female baboons, we test the hypothesis that high-ranking females experience fewer psychosocial and/or energetic stressors than lower-ranking females. We predicted that high-ranking females would have lower fecal glucocorticoid (fGC) concentrations than low-ranking females. Because dominance rank can be measured in multiple ways, we employ an information theoretic approach to compare 5 different measures of rank as predictors of fGC concentrations: ordinal rank; proportional rank; Elo rating; and two approaches to categorical ranking (alpha vs non-alpha and high-middle-low). Our hypothesis was supported, but it was also too simplistic. We found that alpha females exhibited substantially lower fGCs than other females (typical reduction = 8.2%). If we used proportional rank instead of alpha- versus non-alpha status in the model, we observed a weak effect of rank such that fGCs rose 4.2% from the highest- to lowest-ranking female in the hierarchy. Models using ordinal rank, Elo rating, or high-middle-low categories alone failed to explain variation in female fGCs. Our findings shed new light on the association between dominance rank and the stress response, the competitive landscape of female baboons as compared to males, and the assumptions inherent in a researcher’s choice of rank metric.
by
Sophie K Joseph;
Nicola R Migliore;
Anna Olivieri;
Antonio Torroni;
Amanda C Owings;
Michael DeGiorgio;
Wladimir G Ordóñez;
Ortiz J.J Aguilú;
Fabricio González-Andrade;
Alessandro Achilli;
John Lindo
Most studies focusing on human high-altitude adaptation in the Andean highlands have thus far been focused on Peruvian populations. We present high-coverage whole genomes from Indigenous people living in the Ecuadorian highlands and perform multi-method scans to detect positive natural selection. We identified regions of the genome that show signals of strong selection to both cardiovascular and hypoxia pathways, which are distinct from those uncovered in Peruvian populations. However, the strongest signals of selection were related to regions of the genome that are involved in immune function related to tuberculosis. Given our estimated timing of this selection event, the Indigenous people of Ecuador may have adapted to Mycobacterium tuberculosis thousands of years before the arrival of Europeans. Furthermore, we detect a population collapse that coincides with the arrival of Europeans, which is more severe than other regions of the Andes, suggesting differing effects of contact across high-altitude populations.
Stone toolmaking is a human motor skill which provides the earliest archeological evidence motor skill and social learning. Intentionally shaping a stone into a functional tool relies on the interaction of action observation and practice to support motor skill acquisition. The emergence of adaptive and efficient visuomotor processes during motor learning of such a novel motor skill requiring complex semantic understanding, like stone toolmaking, is not understood. Through the examination of eye movements and motor skill, the current study sought to evaluate the changes and relationship in perceptuomotor processes during motor learning and performance over 90 h of training. Participants’ gaze and motor performance were assessed before, during and following training. Gaze patterns reveal a transition from initially high gaze variability during initial observation to lower gaze variability after training. Perceptual changes were strongly associated with motor performance improvements suggesting a coupling of perceptual and motor processes during motor learning.
Background: Antibodies against SARS-CoV-2 can be detected by various testing platforms, but a detailed understanding of assay performance is critical. Methods: We developed and validated a simple enzyme-linked immunosorbent assay (ELISA) to detect IgG binding to the receptor-binding domain (RBD) of SARS-CoV-2, which was then applied for surveillance. ELISA results were compared to a set of complimentary serologic assays using a large panel of clinical research samples. Results: The RBD ELISA exhibited robust performance in ROC curve analysis (AUC> 0.99; Se = 89%, Sp = 99.3%). Antibodies were detected in 23/353 (6.5%) healthcare workers, 6/9 RT-PCR-confirmed mild COVID-19 cases, and 0/30 non-COVID-19 cases from an ambulatory site. RBD ELISA showed a positive correlation with neutralizing activity (p = <0.0001, R2 = 0.26). Conclusions: We applied a validated SARS-CoV-2-specific IgG ELISA in multiple contexts and performed orthogonal testing on samples. This study demonstrates the utility of a simple serologic assay for detecting prior SARS-CoV-2 infection, particularly as a tool for efficiently testing large numbers of samples as in population surveillance. Our work also highlights that precise understanding of SARS-CoV-2 infection and immunity at the individual level, particularly with wide availability of vaccination, may be improved by orthogonal testing and/or more complex assays such as multiplex bead assays.
Background: Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed. Methods: A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated. Results: The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above. Conclusion: The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.