Salt and water retention is a hallmark of nephrotic syndrome (NS). In this study, we test for changes in the abundance of urea transporters, aquaporin 2 (AQP2), Na-K-2Cl cotransporter 2 (NKCC2), and Na-Cl cotransporter (NCC), in non-pair-fed and pair-fed nephrotic animals. Doxorubicin-injected male Sprague-Dawley rats (n = 10) were followed in metabolism cages. Urinary excretion of protein, sodium, and urea was measured periodically. Kidney inner medulla (IM), outer medulla, and cortex tissue samples were dissected and analyzed for mRNA and protein abundances. At 3 wk, all doxorubicin-treated rats developed features of NS, with a ninefold increase in urine protein excretion (from 144 ± 21 to 1,107 ± 165 mg/day; P < 0.001) and reduced urinary sodium excretion (from 0.17 to 0.12 meq/day; P < 0.001). Urine osmolalities were reduced in the nephrotic animals (1,057 ± 37, treatment vs. 1,754 ± 131, control). Unlike animals fed ad libitum, UT-A1 protein abundance was unchanged in nephrotic pair-fed rats. Glycosylated AQP2 was reduced in the IM base of both nephrotic groups. Abundances of NKCC2 and NCC were consistently reduced (71 ± 7 and 33 ± 13%, respectively) in both nephrotic pair-fed animals and animals fed ad libitum. In pair-fed nephrotic rats, we observed an increase in the cleaved form of membrane-bound γ-epithelial sodium channel (ENaC). However, α- and β-ENaC subunits were unaltered. NKCC2 and AQP2 mRNA levels were similar in treated vs. control rats. We conclude that dietary protein intake affects the response of medullary transport proteins to NS.
Volume depletion due to persistent glucosuria-induced osmotic diuresis is a significant problem in uncontrolled diabetes mellitus (DM). Angiotensin II receptor blockers (ARBs), such as candesartan, slow the progression of chronic kidney disease in patients with DM. However, mice with genetic knockout of components of the renin-angiotensin system have urine concentrating defects, suggesting that ARBs may exacerbate the volume depletion. Therefore, the effect of candesartan on UT-A1, UT-A3, NKCC2, and aquaporin-2 (AQP2) protein abundances was determined in control and 3-wk DM rats. Aldosterone levels in control rats (0.36 ± 0.06 nM) and candesartan-treated rats (0.34 ± 0.14 nM) were the same. DM rats had higher aldosterone levels (1.48 ± 0.37 nM) that were decreased by candesartan (0.97 ± 0.26 nM). Western analysis showed that UT-A1 expression was increased in DM rats compared with controls in inner medullary (IM) tip (158 ± 13%) and base (120 ± 25%). UT-A3 abundance was increased in IM tip (123 ± 11%) and base (146 ± 17%) of DM rats vs. controls. UT-A3 was unchanged in candesartan-treated control rats. In candesartan-treated DM rats, UT-A3 increased in IM tip (160 ± 14%) and base (210 ± 19%). Candesartan-treated DM rats had slightly higher AQP2 in IM (46%, P < 0.05) vs. control rats. NKCC2/BSC1 was increased 145 ± 10% in outer medulla of DM vs. control rats. We conclude that candesartan augments compensatory changes in medullary transport proteins, reducing the losses of solute and water during uncontrolled DM. These changes may represent a previously unrecognized beneficial effect of type 1 ARBs in DM.