Purpose:
Conventional iterative low-dose CBCT reconstruction techniques are slow and tend to over-smooth edges through uniform weighting of the image penalty gradient. In this study, we present a non-iterative analytical low-dose CBCT reconstruction technique by restoring the noisy low-dose CBCT projection with the non-local total variation (NLTV) method.
Methods:
We modeled the low-dose CBCT reconstruction as recovering high quality, high-dose CBCT x-ray projections (100 kVp, 1.6 mAs) from low-dose, noisy CBCT x-ray projections (100 kVp, 0.1 mAs). The restoration of CBCT projections was performed using the NLTV regularization method. In NLTV, the x-ray image is optimized by minimizing an energy function that penalizes gray-level difference between pair of pixels between noisy x-ray projection and denoising x-ray projection. After the noisy projection is restored by NLTV regularization, the standard FDK method was applied to generate the final reconstruction output.
Results:
Significant noise reduction was achieved comparing to original, noisy inputs while maintaining the image quality comparable to the high-dose CBCT projections. The experimental validations show the proposed NLTV algorithm can robustly restore the noise level of x-ray projection images while significantly improving the overall image quality. The improvement in normalized mean square error (NMSE) and peak signal-to-noise ratio (PSNR) measured from the non-local total variation-gradient projection (NLTV-GPSR) algorithm is noticeable compared to that of uncorrected low-dose CBCT images. Moreover, the difference of CNRs from the gains from the proposed algorithm is noticeable and comparable to high-dose CBCT.
Conclusion:
The proposed method successfully restores noise degraded, low-dose CBCT projections to high-dose projection quality. Such an outcome is a considerable improvement to the reconstruction result compared to the FDK-based method. In addition, a significant reduction in reconstruction time makes the proposed algorithm more attractive. This demonstrates the potential use of the proposed algorithm for clinical practice in radiotherapy.
by
Lakshmi P. Dasi;
Resmi Krishnankutty Rema;
Hiroumi Kitajima;
Kerem Pekkan;
Kartik S. Sundareswaran;
Mark Fogel;
Shiva Sharma;
Kevin Whitehead;
Kirk Kanter;
Ajit Yoganathan
Objective: We quantify the geometric and hemodynamic characteristics of extracardiac and lateral tunnel Fontan surgical options and correlate certain anatomic characteristics with their hemodynamic efficiency and patient cardiac index. Methods and Results: The study was conducted retrospectively on 22 patients undergoing Fontan operations (11 extracardiac and 11 lateral tunnel operations). Total cavopulmonary connection geometric parameters such as vessel areas, curvature, and offsets were quantified using a skeletonization method. Energy loss at the total cavopulmonary connection junction was available from previous in vitro experiments and computational fluid dynamic simulations for 5 and 9 patients, respectively. Cardiac index data were available for all patients. There was no significant difference in the mean and minimum cross-sectional vessel areas of the pulmonary artery between the extracardiac and lateral tunnel groups. The indexed energy dissipation within the total cavopulmonary connection was strongly correlated to minimum cross-sectional area of the pulmonary arteries (R2 value of 0.90 and P < .0002), whereas all other geometric features, including shape characteristics, had no significant correlation. Finally, cardiac index significantly correlated with the minimum pulmonary artery area (P = .006), suggesting that total cavopulmonary connection energy losses significantly affect resting cardiac output. Conclusions: The minimum outlet size of the total cavopulmonary connection (ie, minimum cross section of pulmonary artery) governs the energy loss characteristics of the total cavopulmonary connection more strongly than variations in the shapes corresponding to extracardiac and lateral tunnel configurations. Differences in pulmonary artery sizes must be accounted for when comparing energy losses between extracardiac and lateral tunnel geometries.
Background: To date, there has been no adequate biomechanical model that would allow a quantitative comparison in terms of stability/stiffness between a corpectomy with the posterior column preserved and a total spondylectomy with the posterior column sacrificed. The objective of this study was to perform a biomechanical comparison of 360° stabilizations for corpectomy and total spondylectomy, using the human thoracolumbar spine. Methods: Five human cadaveric thoracolumbar spines (T8-L2) were tested according to the following loading protocol: axial compression, flexion, extension, lateral bending to the right and left, and axial rotation to the right and left. This loading protocol was applied three times. Each specimen was tested intact, after corpectomy, and after total spondylectomy. The relative stiffness of each motion segment was determined for each test. Results: There was no significant difference in stiffness after reconstruction of total spondylectomy versus corpectomy in our thoracolumbar model. Our construct consisted of an anterior cage and four-level pedicle screw instrumentation (two above and two below) and provided similar stiffness in both models. Despite the additional bone resection in a total spondylectomy versus corpectomy, the constructs did not differ biomechanically. Additionally, there was no significant difference in stiffness between the intact specimen and either reconstruction model. Conclusions: A classic corpectomy, which leaves the posterior column intact, is no better in terms of stability/stiffness than a total spondylectomy carried out using a shorter cage, followed by compression using posterior instrumentation.
Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame.
Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI < 30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI < 50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.
The face and the external nose define an individual’s physical appearance. Nasal deformities can cause facial disfigurement along with unwanted psychological repercussions. Nasal deformities range in severity, with the most severe cases being indications for a rhinectomy, due to the complexity of the nasal defect. According to published literature, there is no consensus among otolaryngologists and plastic surgeons on which technique or flap use is preferred in terms of complications, aesthetic outcome, or patient satisfaction. The goal of this study is to provide a comprehensive analysis of published studies on nasal reconstruction following rhinectomy. Using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines for writing systematic reviews, a systematic review was conducted. Four databases were searched using a search strategy. These articles were then imported into the COVIDENCE software and went screening and thorough article review. After screening 2,237 articles, 23 studies were then extracted for data collection analysis. We collected data from 12 case series, 4 case studies, 1 prospective case series, and 4 retrospective chart review studies. The most commonly reported flaps were forehead flaps, superior extended nasal myocutaneous island, forearm free flaps, anterolateral thigh (ALT) free flap, medial femoral condyle free flap (n ¼ 8), and zygomaticus implants (n ¼ 6), and retained nasal prosthesis. Although not specifically indicated by a certain number, the most common indication for the rhinectomy was malignancy, followed by traumas, postsurgical complications, radionecrosis, and congenital nasal malformations. Although several donor flaps can be used after rhinectomy, we conclude that there is no preference over what flap has superior patient outcomes after analysis. As of current, there are no prospective studies that exist. Therefore, more research is necessary to determine the results of each flap.
by
Kartik S. Sundareswaran;
Christopher M. Haggerty;
Diane de Zelicourt;
Lakshmi P. Dasi;
Kerem Pekkan;
David H. Frakes;
Andrew J. Powell;
Kirk R Kanter;
Mark A. Fogel;
Ajit Yoganathan
Objective: Our objective was to analyze 3-dimensional (3D) blood flow patterns within the total cavopulmonary connection (TCPC) using in vivo phase contrast magnetic resonance imaging (PC MRI).
Methods: Sixteen single-ventricle patients were prospectively recruited at 2 leading pediatric institutions for PC MRI evaluation of their Fontan pathway. Patients were divided into 2 groups. Group 1 comprised 8 patients with an extracardiac (EC) TCPC, and group 2 comprised 8 patients with a lateral tunnel (LT) TCPC. A coronal stack of 5 to 10 contiguous PC MRI slices with 3D velocity encoding (5-9 ms resolution) was acquired and a volumetric flow field was reconstructed.
Results: Analysis revealed large vortices in LT TCPCs and helical flow structures in EC TCPCs. On average, there was no difference between LT and EC TCPCs in the proportion of inferior vena cava flow going to the left pulmonary artery (43% ± 7% vs 46% ± 5%; P = .34). However, for EC TCPCs, the presence of a caval offset was a primary determinant of inferior vena caval flow distribution to the pulmonary arteries with a significant bias to the offset side.
Conclusions: 3D flow structures within LT and EC TCPCs were reconstructed and analyzed for the first time using PC MRI. TCPC flow patterns were shown to be different, not only on the basis of LT or EC considerations, but with significant influence from the superior vena cava connection as well. This work adds to the ongoing body of research demonstrating the impact of TCPC geometry on the overall hemodynamic profile.
RATIONALE AND OBJECTIVE: Three-dimensional (3D) printed anatomic models and surgical guides have been shown to reduce operative time. The purpose of this study was to generate an economic analysis of the cost-saving potential of 3D printed anatomic models and surgical guides in orthopedic and maxillofacial surgical applications. MATERIALS AND METHODS: A targeted literature search identified operating room cost-per-minute and studies that quantified time saved using 3D printed constructs. Studies that reported operative time differences due to 3D printed anatomic models or surgical guides were reviewed and cataloged. A mean of $62 per operating room minute (range of $22–$133 per minute) was used as the reference standard for operating room time cost. Different financial scenarios were modeled with the provided cost-per-minute of operating room time (using high, mean, and low values) and mean time saved using 3D printed constructs. RESULTS: Seven studies using 3D printed anatomic models in surgical care demonstrated a mean 62 minutes ($3720/case saved from reduced time) of time saved, and 25 studies of 3D printed surgical guides demonstrated a mean 23 minutes time saved ($1488/case saved from reduced time). An estimated 63 models or guides per year (or 1.2/week) were predicted to be the minimum number to breakeven and account for annual fixed costs. CONCLUSION: Based on the literature-based financial analyses, medical 3D printing appears to reduce operating room costs secondary to shortening procedure times. While resource-intensive, 3D printed constructs used in patients’ operative care provides considerable downstream value to health systems.