by
Diane G. Carnathan;
Katherine S. Wetzel;
Joana Yu;
S. Thera Lee;
Brent A. Johnson;
Mirko Paiardini;
Jian Yan;
Matthew P. Morrow;
Niranjan Y. Sardesai;
David B. Weiner;
Hildegund C. J. Ertl;
Guido Silvestri
An effective T-cell-based AIDS vaccine should induce strong HIV-specific CD8+T cells in mucosal tissues without increasing the availability of target cells for the virus. Here, we evaluated five immunization strategies that include Human adenovirus-5 (AdHu5), Chimpanzee adenovirus-6 (AdC6) or -7 (AdC7), Vaccinia virus (VV), and DNA given by electroporation (DNA/EP), all expressing Simian immunodeficiency virus group specific antigen/transactivator of transcription (SIVmac239Gag/Tat). Five groups of six rhesus macaques (RMs) each were vaccinated with DNA/EP-AdC6-AdC7, VV-AdC6-AdC7, DNA/-EPVV- AdC6, DNA/EP-VV-AdC7, or AdHu5-AdHu5-AdHu5 and were challenged repeatedly with low-dose intrarectal SIVmac239. Upon challenge, there were no significant differences among study groups in terms of virus acquisition or viral load after infection. When taken together, the immunization regimens did not protect against SIV acquisition compared with controls but did result in an ∼1.6-log decline in set-point viremia. Although all immunized RMs had detectable SIVspecific CD8+ T cells in blood and rectal mucosa, we found no correlation between the number or function of these SIV-specific CD8+ T cells and protection against SIV acquisition. Interestingly, RMs experiencing breakthrough infection showed significantly higher prechallenge levels of CD4+C-C chemokine receptor type 5 (CCR5)+HLA-DR+ T cells in the rectal biopsies (RB) than animals that remained uninfected. In addition, among the infected RMs, the percentage of CD4+CCR5+Ki- 67+ T cells in RBs prechallenge correlated with higher early viremia. Overall, these data suggest that the levels of activated CD4+CCR5+ target T cells in the rectal mucosa may predict the risk of SIV acquisition in RMs vaccinated with vectors that express SIVGag/Tat.
by
Lu Xu;
Hongyu Guo;
Christopher M. Boyd;
Mitchel Klein;
Aikaterini Bougiatioti;
Kate M. Cerully;
James R. Hite;
Gabriel Isaacman-VanWertz;
Nathan M. Kreisberg;
Christoph Knote;
Kevin Olson;
Abigail Koss;
Allen H. Goldstein;
Susanne V. Hering;
Joost de Gouw;
Karsten Baumann;
Shan-Hu Lee;
Athanasios Nenes;
Rodney J. Weber;
Nga Lee Ng
Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO2 and NOx in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NOx is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NOx can mediate 43-70% of total measured organic aerosol (29-49% of submicron particulate matter, PM1) in the southeastern US during summer. These measurements imply that future reduction in SO2 and NOx emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic-biogenic interactions and consequently improve air quality and climate simulations.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.It has not been determined whether implementation of combined prevention programming for persons who inject drugs reduce racial/ethnic disparities in HIV infection. We examine racial/ethnic disparities in New York City among persons who inject drugs after implementation of the New York City Condom Social Marketing Program in 2007. Quantitative interviews and HIV testing were conducted among persons who inject drugs entering Mount Sinai Beth Israel drug treatment (2007-2014). 703 persons who inject drugs who began injecting after implementation of large-scale syringe exchange were included in the analyses. Factors independently associated with being HIV seropositive were identified and a published model was used to estimate HIV infections due to sexual transmission. Overall HIV prevalence was 4%; Whites 1%, African-Americans 17%, and Hispanics 4%. Adjusted odds ratios were 21.0 (95% CI 5.7, 77.5) for African-Americans to Whites and 4.5 (95% CI 1.3, 16.3) for Hispanics to Whites. There was an overall significant trend towards reduced HIV prevalence over time (adjusted odd ratio = 0.7 per year, 95% confidence interval (0.6-0.8). An estimated 75% or more of the HIV infections were due to sexual transmission. Racial/ethnic disparities among persons who inject drugs were not significantly different from previous disparities. Reducing these persistent disparities may require new interventions (treatment as prevention, pre-exposure prophylaxis) for all racial/ethnic groups.
by
June E. Pais;
Nan Dai;
Esta Tamanaha;
Romualdas Vaisvila;
Alexey I. Fomenkov;
Jurate Bitinaite;
Zhiyi Sun;
Shengxi Guan;
Ivan Correa;
Christopher J. Noren;
Xiaodong Cheng;
Richard J. Roberts;
Yu Zheng;
Lana Saleh
Modified DNA bases in mammalian genomes, such as 5-methylcytosine (<sup>5m</sup>C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of <sup>5m</sup>C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like <sup>5m</sup>C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both <sup>5m</sup>C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine (<sup>5f</sup>U) and 5-carboxyuridine (<sup>5ca</sup>U) in vitro. Mutagenesis studies reveal a delicate balance between choice of <sup>5m</sup>C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to <sup>5m</sup>CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in <sup>5m</sup>C sequencing technologies such as single molecule, realtime sequencing to map <sup>5m</sup>C in bacterial genomes at base resolution.
by
Matthew C. L. Keith;
Xian-Liang Tang;
Yukichi Tokita;
Qian-hong Li;
Shahab Ghafghazi;
Joseph Moore;
Kyung U. Hong;
Brandon Elmore;
Alok Amraotkar;
Brian L. Ganzel;
Kendra Grubb;
Michael P. Flaherty;
Gregory Hunt;
Bathri Vajravelu;
Marcin Wysoczynski;
Roberto Bolli
Background: There is mounting interest in using c-kit positive human cardiac stem cells (c-kit<sup>pos</sup> hCSCs) to repair infarcted myocardium in patients with ischemic cardiomyopathy. A recent phase I clinical trial (SCIPIO) has shown that intracoronary infusion of 1 million hCSCs is safe. Higher doses of CSCs may provide superior reparative ability; however, it is unknown if doses >1 million cells are safe. To address this issue, we examined the effects of 20 million hCSCs in pigs. Methods: Right atrial appendage samples were obtained from patients undergoing cardiac surgery. The tissue was processed by an established protocol with eventual immunomagnetic sorting to obtain in vitro expanded hCSCs. A cumulative dose of 20 million cells was given intracoronarily to pigs without stop flow. Safety was assessed by measurement of serial biomarkers (cardiac: troponin I and CK-MB, renal: creatinine and BUN, and hepatic: AST, ALT, and alkaline phosphatase) and echocardiography pre- and post-infusion. hCSC retention 30 days after infusion was quantified by PCR for human genomic DNA. All personnel were blinded as to group assignment. Results: Compared with vehicle-treated controls (n=5), pigs that received 20 million hCSCs (n=9) showed no significant change in cardiac function or end organ damage (assessed by organ specific biomarkers) that could be attributed to hCSCs (P>0.05 in all cases). No hCSCs could be detected in left ventricular samples 30 days after infusion. Conclusions: Intracoronary infusion of 20 million c-kit positive hCSCs in pigs (equivalent to ∼40 million hCSCs in humans) does not cause acute cardiac injury, impairment of cardiac function, or liver and renal injury. These results have immediate translational value and lay the groundwork for using doses of CSCs >1 million in future clinical trials. Further studies are needed to ascertain whether administration of >1 million hCSCs is associated with greater efficacy in patients with ischemic cardiomyopathy.
Background: The pathomechanisms of atherosclerosis and vascular remodelling are under intense research. Only a few in vivo tools to study these processes longitudinally in animal experiments are available. Here, we evaluated the potential of micro-CT technology. Methods: Lumen areas of the common carotid arteries (CCA) in the ApoE<sup>-/-</sup> partial carotid artery ligation mouse model were compared between in vivo and ex vivo micro-CT technique and serial histology in a total of 28 animals. AuroVist-15 nm nanoparticles were used as in vivo blood pool contrast agent in a Skyscan 1176 micro-CT at resolution of 18 μmeter voxel size and a mean x-ray dose of 0.5 Gy. For ex vivo imaging, animals were perfused with MicroFil and imaged at 9 μmeter voxel size. Lumen area was evaluated at postoperative days 7, 14, and 28 first by micro-CT followed by histology. Results: In vivo micro-CT and histology revealed lumen loss starting at day 14. The lumen profile highly correlated (r = 0.79, P<0.0001) between this two methods but absolute lumen values obtained by histology were lower than those obtained by micro-CT. Comparison of in vivo and ex vivo micro-CT imaging revealed excellent correlation (r = 0.83, P<0.01). Post mortem micro-CT yielded a higher resolution than in vivo micro-CT but there was no statistical difference of lumen measurements in the partial carotid artery ligation model. Conclusion: These data demonstrate that in vivo micro-CT is a feasible and accurate technique with low animal stress to image remodeling processes in the murine carotid artery.
Autophagy, an ancient homeostasis mechanism for macromolecule degradation, performs an important role in host defense by facilitating pathogen elimination. To counteract this host defense strategy, bacterial pathogens have evolved a variety of mechanisms to avoid or otherwise dysregulate autophagy by phagocytic cells so as to enhance their survival during infection. Neisseria gonorrhoeae is a strictly human pathogen that causes the sexually transmitted infection, gonorrhea. Phosphoethanolamine (PEA) addition to the 4' position of the lipid A (PEA-lipid A) moiety of the lipooligosaccharide (LOS) produced by gonococci performs a critical role in this pathogen's ability to evade innate defenses by conferring decreased susceptibility to cationic antimicrobial (or host-defense) peptides, complementmediated killing by human serum and intraleukocytic killing by human neutrophils compared to strains lacking this PEA decoration. Heretofore, however, it was not known if gonococci can evade autophagy and if so, whether PEA-lipid A contributes to this ability. Accordingly, by using murine macrophages and human macrophage-like phagocytic cell lines we investigated if PEA decoration of gonococcal lipid A modulates autophagy formation. We report that infection with PEA-lipid A-producing gonococci significantly reduced autophagy flux in murine and human macrophages and enhanced gonococcal survival during their association with macrophages compared to a PEA-deficient lipid A mutant. Our results provide further evidence that PEA-lipid A produced by gonococci is a critical component in the ability of this human pathogen to evade host defenses. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Lentiviruses such as HIV-1 encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs) that include motifs mediating interactions with host-cell-trafficking factors. We demonstrated recently that Rab11-family interacting protein 1C (FIP1C) is required for CT-dependent incorporation of Env into HIV-1 particles. Here, we used viruses bearing targeted substitutions within CT to map the FIP1C-dependent incorporation of Env. We identified YW795 as a critical motif mediating cell-type-dependent Env incorporation. Disruption of YW795 reproduced the cell-type-dependent particle incorporation of Env that had previously been observed with large truncations of CT. A revertant virus bearing a single amino acid change near the C terminus of CT restored wild-type levels of Env incorporation, Gag-Env colocalization on the plasma membrane, and viral replication. These findings highlight the importance of YW795 in the cell-type-dependent incorporation of Env and support a model of HIV assembly in which FIP1C/RCP mediates Env trafficking to the particle assembly site.
by
Caileen M. Brison;
Steven M. Mullen;
Michelle E. Wuerth;
Kira Podolsky;
Matthew Cook;
Jacob A. Herman;
Justin D. Walter;
Shannon Meeks;
P. Clint Spiegel
The factor VIII C2 domain is essential for binding to activated platelet surfaces as well as the cofactor activity of factor VIII in blood coagulation. Inhibitory antibodies against the C2 domain commonly develop following factor VIII replacement therapy for hemophilia A patients, or they may spontaneously arise in cases of acquired hemophilia. Porcine factor VIII is an effective therapeutic for hemophilia patients with inhibitor due to its low cross-reactivity; however, the molecular basis for this behavior is poorly understood. In this study, the X-ray crystal structure of the porcine factor VIII C2 domain was determined, and superposition of the human and porcine C2 domains demonstrates that most surface-exposed differences cluster on the face harboring the "non-classical" antibody epitopes. Furthermore, antibody-binding results illustrate that the "classical" 3E6 antibody can bind both the human and porcine C2 domains, although the inhibitory titer to human factor VIII is 41 Bethesda Units (BU)/mg IgG versus 0.8 BU/mg IgG to porcine factor VIII, while the non-classical G99 antibody does not bind to the porcine C2 domain nor inhibit porcine factor VIII activity. Further structural analysis of differences between the electrostatic surface potentials suggest that the C2 domain binds to the negatively charged phospholipid surfaces of activated platelets primarily through the 3E6 epitope region. In contrast, the G99 face, which contains residue 2227, should be distal to the membrane surface. Phospholipid binding assays indicate that both porcine and human factor VIII C2 domains bind with comparable affinities, and the human K2227A and K2227E mutants bind to phospholipid surfaces with similar affinities as well. Lastly, the G99 IgG bound to PS-immobilized factor VIII C2 domain with an apparent dissociation constant of 15.5 nM, whereas 3E6 antibody binding to PS-bound C2 domain was not observed.
Langat virus (LGTV), one of the members of the tick-borne encephalitis virus (TBEV) complex, was firstly isolated from Ixodes granulatus ticks in Malaysia. However, the prevalence of LGTV in ticks in the region remains unknown. Surveillance for LGTV is therefore important and thus a tool for specific detection of LGTV is needed. In the present study, we developed a real-time quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for rapid detection of LGTV. Our findings showed that the developed qRT-PCR could detect LGTV at a titre as low as 0.1 FFU/ml. The detection limit of the qRT-PCR assay at 95% probability was 0.28 FFU/ml as determined by probit analysis (p ≤ 0.05). Besides, the designed primers and probe did not amplify ORF of the E genes for some closely related and more pathogenic viruses including TBEV, Louping ill virus, Omsk hemorrhagic fever virus (OHFV), Alkhurma virus (ALKV), Kyasanur Forest Disease virus (KFDV) and Powassan virus (POWV) which showed the acceptable specificity of the developed assay. The sensitivity of the developed method also has been confirmed by determining the LGTV in infected tick cell line as well as LGTV- spiked tick tissues.