by
C Hendricks Brown;
David C. Mohr;
Carlos G. Gallo;
Christopher Mader;
Lawrence Palinkas;
Gina Wingood;
Guillermo Prado;
Sheppard G. Kellam;
Hilda Pantin;
Jeanne Poduska;
Robert Gibbons;
John McManus;
Mitsunori Ogihara;
Thomas Valente;
Fred Wulczyn;
Sara Czaja;
Geoff Sutcliffe;
Juan Villamar;
Christopher Jacobs
African Americans and Hispanics in the United States have much higher rates of HIV than non-minorities. There is now strong evidence that a range of behavioral interventions are efficacious in reducing sexual risk behavior in these populations. Although a handful of these programs are just beginning to be disseminated widely, we still have not implemented effective programs to a level that would reduce the population incidence of HIV for minorities. We proposed that innovative approaches involving computational technologies be explored for their use in both developing new interventions and in supporting wide-scale implementation of effective behavioral interventions. Mobile technologies have a place in both of these activities. First, mobile technologies can be used in sensing contexts and interacting to the unique preferences and needs of individuals at times where intervention to reduce risk would be most impactful. Second, mobile technologies can be used to improve the delivery of interventions by facilitators and their agencies. Systems science methods including social network analysis, agent-based models, computational linguistics, intelligent data analysis, and systems and software engineering all have strategic roles that can bring about advances in HIV prevention in minority communities. Using an existing mobile technology for depression and 3 effective HIV prevention programs, we illustrated how 8 areas in the intervention/implementation process can use innovative computational approaches to advance intervention adoption, fidelity, and sustainability.
by
Julie A. Womack;
Terrence E. Murphy;
Harini Bathulapalli;
Kathleen M. Akgun;
Cynthia Gibert;
Ken M. Kunisaki;
David Rimland;
Maria Rodriguez-Barradas;
H. Klar Yaggi;
Amy C. Justice;
Nancy S. Redeker
by
Allison Eckard;
Mary Ann O'Riordan;
Julia C. Rosebush;
Joshua H. Ruff;
Ann Chahroudi;
Danielle Labbato;
Julie E. Daniels;
Monika Uribe-Leitz;
Vin Tangpricha;
Grace A. McComsey
Background
Low bone mineral density (BMD) is a significant co-morbidity in HIV. However, studies evaluating vitamin D supplementation on bone health in this population are limited. This study investigates changes in bone health parameters after 12 months of supplementation in HIV-infected youth with vitamin D insufficiency.
Methods
This is a randomized, active-control, double-blind trial investigating changes in bone parameters with 3 different vitamin D3 doses [18,000 (standard/control dose), 60,000 (moderate dose) and 120,000 IU/monthly (high dose)] in HIV-infected youth 8–25 years old with baseline serum 25-hydroxyvitamin D (25(OH)D) concentrations <30 ng/mL. Bone mineral density and bone turnover markers were measured at baseline and 12 months.
Results
One hundred and two subjects enrolled. Over 12 months, serum 25(OH)D concentrations increased with all doses, but the high dose (i.e. 120,000 IU/monthly) maintained serum 25(OH)D concentrations in an optimal range (≥30 ng/mL or ≥20 ng/mL) throughout the study period for more subjects (85% and 93%, respectively) compared to either the moderate (54% and 88%, respectively) or standard dose (63% and 80%, respectively). All dosing groups showed some improvement in BMD; however, only the high-dose arm showed significant decreases in bone turnover markers for both procollagen type 1 amino-terminal propeptide (−3.7 ng/mL; P=0.001) and B-CrossLaps (−0.13 ng/mL; P=0.0005).
Conclusions
High dose vitamin D supplementation (120,000 IU/month) given over 12 months decreases bone turnover markers in HIV-infected youth with vitamin D insufficiency, which may represent an early, beneficial effect on bone health. High vitamin D doses are needed to maintain optimal serum 25(OH)D concentrations.