by
John Horton;
Xu Liu;
Molly Gale;
Lizhen Wu;
John R. Shanks;
Xing Zhang;
Philip J. Webber;
Joshua S.K. Bell;
Stephen C Kales;
Bryan T Mott;
Ganesha Rai;
Daniel J Jansen;
Mark J Henderson;
Daniel J Urban;
Matthew D Hall;
Anton Simeonov;
David J Maloney;
Margaret A. Johns;
Haian Fu;
Ajit Jadhav;
Paula Vertino;
Qin Yan;
Xiaodong Cheng
The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases removes methyl groups from methylated lysine 4 of histone H3. Accumulating evidence supports a role for KDM5 family members as oncogenic drivers. We compare the in vitro inhibitory properties and binding affinity of ten diverse compounds with all four family members, and present the crystal structures of the KDM5A-linked Jumonji domain in complex with eight of these inhibitors in the presence of Mn(II). All eight inhibitors structurally examined occupy the binding site of α-ketoglutarate, but differ in their specific binding interactions, including the number of ligands involved in metal coordination. We also observed inhibitor-induced conformational changes in KDM5A, particularly those residues involved in the binding of α-ketoglutarate, the anticipated peptide substrate, and intramolecular interactions. We discuss how particular chemical moieties contribute to inhibitor potency and suggest strategies that might be utilized in the successful design of selective and potent epigenetic inhibitors.
by
James E. Voss;
Matthew S. Macauley;
Kenneth A. Rogers;
Francois Villinger;
Lijie Duan;
Liang Shang;
Elizabeth A. Fink;
Raiees Andrabi;
Arnaud D. Colantonio;
James E. Robinson;
Robert Johnson;
Dennis R. Burton;
Ashley T. Haase
Vaccination with SIV mac239 δnef provides robust protection against subsequent challenge with wild-type simian immunodeficiency virus (SIV), but safety issues have precluded designing an HIV-1 vaccine based on a live-attenuated virus concept. Safe immunogens and adjuvants that could reproduce identified immune correlates of SIV mac239 δnef protection therefore offer an alternative path for development of an HIV vaccine. Here we describe SIV envelope trimeric gp41 (gp41t) immunogens based on a protective correlate of antibodies to gp41t concentrated on the path of virus entry by the neonatal Fc receptor (FcRn) in cervical vaginal epithelium. We developed a gp41t immunogen-monophosphoryl lipid A adjuvant liposomal nanoparticle for intramuscular (i.m.) immunization and a gp41t-Fc immunogen for intranasal immunization for pilot studies in mice, rabbits, and rhesus macaques. Repeated immunizations to mimic persistent antigen exposure in infection elicited gp41t antibodies in rhesus macaques that were detectable in FcRn cervical vaginal epithelium, thus recapitulating one key feature of SIV mac239 δnef vaccinated and protected animals. Although this strategy did not reproduce the system of local production of antibody in SIV mac239 δnef-vaccinated animals, passive immunization experiments supported the concept that sufficiently high levels of antibody can be concentrated by the FcRn at mucosal frontlines, thus setting the stage for assessing protection against vaginal challenge by gp41t immunization.
Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected - 17% of expressed transcripts, whereas ZC3H14 affected only - 1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F 0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function.
KGaA, Weinheim Protein–ligand interactions serve as fundamental regulators of numerous biological processes. Among protein–ligand pairs, glycan binding proteins (GBPs) and the glycans they recognize represent unique and highly complex interactions implicated in a broad range of regulatory activities. With few exceptions, cell surface receptors and secreted proteins are heavily glycosylated. As these glycans often represent highly regulatable post-translational modifications, alterations in glycosylation can fundamentally impact GBP recognition. Among GBPs, galectins in particular appear to engage a diverse set of glycan determinants to impact a broad range of biological processes. In this review, we will explore factors that impact galectin activity, including the effect of glycan modification on galectin–glycan interactions.
Over the last quarter-century, there has been tremendous progress in genetics research that has defined molecular causes for cardiomyopathies. More than a thousand mutations have been identified in many genes with varying ontologies, therein indicating the diverse molecules and pathways that cause hypertrophic, dilated, restrictive, and arrhythmogenic cardiomyopathies. Translation of this research to the clinic via genetic testing can precisely group affected patients according to molecular etiology, and identify individuals without evidence of disease who are at high risk for developing cardiomyopathy. These advances provide insights into the earliest manifestations of cardiomyopathy and help to define the molecular pathophysiological basis for cardiac remodeling. Although these efforts remain incomplete, new genomic technologies and analytic strategies provide unparalleled opportunities to fully explore the genetic architecture of cardiomyopathies. Such data hold the promise that mutation-specific pathophysiology will uncover novel therapeutic targets, and herald the beginning of precision therapy for cardiomyopathy patients.
An essential component of goal-directed decision-making is the ability to maintain flexible responding based on the value of a given reward, or “reinforcer.” The medial orbitofrontal cortex (mOFC), a subregion of the ventromedial prefrontal cortex, is uniquely positioned to regulate this process. We trained mice to nose poke for food reinforcers and then stimulated this region using CaMKII-driven Gs-coupled designer receptors exclusively activated by designer drugs (DREADDs). In other mice, we silenced the neuroplasticity-associated neurotrophin brain-derived neurotrophic factor (BDNF). Activation of Gs-DREADDs increased behavioral sensitivity to reinforcer devaluation, whereas Bdnf knockdown blocked sensitivity. These changes were accompanied by modifications in breakpoint ratios in a progressive ratio task, and they were recapitulated in Bdnf+/− mice. Replacement of BDNF selectively in the mOFC in Bdnf+/− mice rescued behavioral deficiencies, as well as phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2). Thus, BDNF expression in the mOFC is both necessary and sufficient for the expression of typical effort allocation relative to an anticipated reinforcer. Additional experiments indicated that expression of the immediate-early gene c-fos was aberrantly elevated in the Bdnf+/− dorsal striatum, and BDNF replacement in the mOFC normalized expression. Also, systemic administration of an MAP kinase kinase inhibitor increased breakpoint ratios, whereas the addition of discrete cues bridging the response–outcome contingency rescued breakpoints in Bdnf+/− mice. We argue that BDNF–ERK1/2 in the mOFC is a key regulator of “online” goal-directed action selection. SIGNIFICANCE STATEMENT Goal-directed response selection often involves predicting the consequences of one's actions and the value of potential payoffs. Lesions or chemogenetic inactivation of the medial orbitofrontal cortex (mOFC) in rats induces failures in retrieving outcome identity memories (Bradfield et al., 2015), suggesting that the healthy mOFC serves to access outcome value information when it is not immediately observable and thereby guide goal-directed decision-making. Our findings suggest that the mOFC also bidirectionally regulates effort allocation for a given reward and that expression of the neurotrophin BDNF in the mOFC is both necessary and sufficient for mice to sustain stable representations of reinforcer value.
This study explores whether inflammatory biomarkers act as moderators of clinical response to omega-3 (n-3) fatty acids in subjects with Major Depressive Disorder (MDD). 155 subjects with DSM-IV MDD, a baseline 17-item Hamilton Depression Rating Scale (HAM-D-17) score ≥ 15 and baseline biomarker data (IL-1ra, IL-6, hs-CRP, leptin, adiponectin), were randomized between 05/18/06 and 06/30/11, to 8 weeks of double-blind treatment with eicosapentaenoic acid (EPA)-enriched n-3 1060 mg/day, docosahexaenoic acid (DHA)-enriched n-3 900 mg/day, or placebo. Outcomes were determined using mixed model repeated measures (MMRM) analysis for “high” and “low” inflammation groups based on individual and combined biomarkers. Results are presented in terms of standardized treatment effect size (ES) for change in HAM-D-17 from baseline to treatment week 8. While overall treatment group differences were negligible (ES=−0.13 to +0.04), subjects with any “high” inflammation improved more on EPA than placebo (ES=−0.39) or DHA (ES=−0.60) and less on DHA than placebo (ES=+0.21); furthermore, EPA-placebo separation increased with increasing numbers of markers of high inflammation. Subjects randomized to EPA with “high” IL-1ra or hs-CRP or low adiponectin (“high” inflammation) had medium ES decreases in HAM-D-17 scores versus subjects “low” on these biomarkers. Subjects with “high” hs-CRP, IL-6 or leptin were less placebo-responsive than subjects with low levels of these biomarkers (medium to large ES differences). Employing multiple markers of inflammation facilitated identification of a more homogeneous cohort of subjects with MDD responding to EPA versus placebo in our cohort. Studies are needed to replicate and extend this proof of concept work.
by
Miranda Arnold;
Rebecca Cross;
Kaela S. Singleton;
Stephanie Zlatic;
Christopher Chapleau;
Ariana P. Mullin;
Isaiah Rolle;
Carlene C. Moore;
Anne Theibert;
Lucas Pozzo-Miller;
Victor Faundez;
Jennifer Larimore
AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosomedependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase checkpoint pathway maintains genome integrity; however, the role of the sirtuin 2 (SIRT2) acetylome in regulating this pathway is not clear. We found that deacetylation of ATR-interacting protein (ATRIP), a regulatory partner of ATR, by SIRT2 potentiates the ATR checkpoint. SIRT2 interacts with and deacetylates ATRIP at lysine 32 (K32) in response to replication stress. SIRT2 deacetylation of ATRIP at K32 drives ATR autophosphorylation and signaling and facilitates DNA replication fork progression and recovery of stalled replication forks. K32 deacetylation by SIRT2 further promotes ATRIP accumulation to DNA damage sites and binding to replication protein A-coated single-stranded DNA (RPA-ssDNA). Collectively, these results support a model in which ATRIP deacetylation by SIRT2 promotes ATR-ATRIP binding to RPA-ssDNA to drive ATR activation and thus facilitate recovery from replication stress, outlining a mechanism by which the ATR checkpoint is regulated by SIRT2 through deacetylation.
A major risk factor of developing colorectal cancer (CRC) is the presence of chronic inflammation in the colon. In order to understand how inflammation contributes to CRC development, the present study focused on SHP-2, a tyrosine phosphatase encoded by PTPN11 gene in which polymorphisms have been shown to be markers of colitis susceptibility. Conversely, gain-of-function mutations in PTPN11 gene (E76 residue) have been found in certain sporadic CRC. Results shown herein demonstrate that SHP-2 expression was markedly increased in sporadic human adenomas but not in advanced colorectal tumors. SHP-2 silencing inhibited proliferative, invasive and tumoral properties of both intestinal epithelial cells (IECs) transformed by oncogenic KRAS and of human CRC cells. IEC-specific expression of a SHP-2E76K activated mutant in mice was not sufficient to induce tumorigenesis but markedly promoted tumor growth under the ApcMin/+ background. Conversely, mice with a conditional deletion of SHP-2 in IECs developed colitis-associated adenocarcinomas with age, associated with sustained activation of Wnt/β-catenin, NFκB and STAT3 signalings in the colonic mucosae. Moreover, SHP-2 epithelial deficiency considerably increased tumor load in ApcMin/+ mice, shifting tumor incidence toward the colon. Overall, these results reveal that SHP-2 can exert opposing functions in the large intestine: it can promote or inhibit tumorigenesis depending of the inflammatory context.