The intersection of tuberculosis (TB) with non-communicable diseases (NCDs), including diabetes mellitus (DM), chronic lung disease (CLD), and cardiovascular disease (CVD), has emerged as a critical clinical and public health challenge. Rapidly expanding NCD epidemics threaten TB control in low- and middle-income countries, where the prevention and treatment of TB disease remain a great burden. However, to date, the notion that TB may adversely impact NCD risk and severity has not been well explored. This review summarizes biomedical hypotheses, findings from animal models, and emerging epidemiologic data related to the progression of DM, CLD and CVD during and after active TB disease. We conclude that there is sufficient empirical evidence to justify a greater research emphasis on the syndemic interaction between TB and NCD.
by
John J. Bowling;
Hari K. Pennaka;
Kelly Ivey;
Subagus Wahyuono;
Michelle Kelly;
Raymond F Schinazi;
Frederick A. Valeriote;
David E. Graves;
Mark T. Hamann
Aaptamine has potent cytotoxicity that may be explained by its ability to intercalate DNA. Aaptamine was evaluated for its ability to bind to DNA to validate DNA binding as the primary mechanism of cytotoxicity. Based on UV-vis absorbance titration data, the Kobs for aaptamine was 4.0 (±0.2) × 103 which was essentially equivalent to the known DNA intercalator N-[2-(diethylamino)ethyl]-9-aminoacridine-4-carboxamide. Semi-synthetic core modifications were performed to improve the general structural diversity of known aaptamine analogs and vary its absorption characteristics. Overall, 26 aaptamine derivatives were synthesized which consisted of a simple homologous range of mono and di-N-alkylations as well as some 9-O-sulfonylation and bis-O-isoaaptamine dimer products. Each product was evaluated for activity in a variety of whole cell and viral assays including a unique solid tumor disk diffusion assay. Details of aaptamine's DNA-binding activity and its derivatives' whole cell and viral assay results are discussed.
BACKGROUND: Following a concerted public health response to the resurgence of tuberculosis (TB) in the United States in the late 1980s, annual TB incidence decreased substantially. However, no estimates exist of the number and cost savings of TB cases averted. METHODS : TB cases averted in the United States during 1995-2014 were estimated: Scenario 1 used a static 1992 case rate; Scenario 2 applied the 1992 rate to foreign-born cases, and a pre-resurgence 5.1% annual decline to US-born cases; and a statistical model assessed human immunodeficiency virus and TB program indices. We applied the cost of illness to estimate the societal benefits (costs averted) in 2014 dollars. RESULT S : During 1992-2014, 368 184 incident TB cases were reported, and cases decreased by two thirds during that period. In the scenarios and statistical model, TB cases averted during 1995-2014 ranged from approximately 145 000 to 319 000. The societal benefits of averted TB cases ranged from US3.1 to US6.7 billion, excluding deaths, and from US6.7 to US14.5 billion, including deaths. CONCLUS IONS : Coordinated efforts in TB control and prevention in the United States yielded a remarkable number of TB cases averted and societal economic benefits. We illustrate the value of concerted action and targeted public health funding.
Non-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs. Results: Highly mac-tropic Envs mediated highest infectivity for primary T-cells, Jurkat/CCR5 cells, myeloid dendritic cells, macrophages, and HeLa TZM-bl cells, although this was most dramatic on macrophages. Infection of primary T-cells mediated by all Envs was low. However, infection of T-cells was greatly enhanced by increasing virus attachment with DEAE dextran and spinoculation, which enhanced the three Env+virus groups to similar extents. Dendritic cell capture of viruses and trans-infection also greatly enhanced infection of primary T-cells. In trans-infection assays, non-mac-tropic R5 Envs were preferentially enhanced and those from late disease mediated levels of T-cell infection that were equivalent to those mediated by mac-tropic Envs. Conclusions: Our results demonstrate that T/F, early or late disease non-mac-tropic R5 Envs do not preferentially mediate infection of primary CD4+ T-cells compared to highly mac-tropic Envs from brain tissue. We conclude that non-macrophage-tropism of HIV-1 R5 Envs in vitro is determined predominantly by a reduced capacity to target myeloid cells via low CD4 rather than a specific adaptation for T-cells entry that precludes macrophage infection.
Background: Approximately 14 million children attend more than 14000 US camps every year. Shared accommodations and activities can facilitate acute gastroenteritis (AGE) outbreaks. Methods: We analyzed data from the National Outbreak Reporting System on US youth camp-associated AGE outbreaks that occurred between 2009 and 2016. We also conducted a systematic literature search of youth camp-associated AGE outbreaks that have occurred around the world and a gray literature search for existing recommendations on outbreak prevention and control at camps worldwide. Results: Thirty-nine US jurisdictions reported a total of 229 youth camp-associated AGE outbreaks to the National Outbreak Reporting System. Of the 226 outbreaks included in our analyses, 120 (53%) were reported to have resulted from person-to-person transmission, 42 (19%) from an unknown transmission mode, 38 (17%) from foodborne transmission, 19 (8%) from waterborne transmission, 5 (2%) from animal contact, and 2 (<1%) from environmental contamination. Among 170 (75%) outbreaks with a single suspected or confirmed etiology, norovirus (107 [63%] outbreaks), Salmonella spp (16 [9%]), and Shiga-toxin producing Escherichia coli (12 [7%]) were implicated most frequently. We identified 43 additional youth camp-associated AGE outbreaks in the literature that occurred in various countries between 1938 and 2014. Control measures identified through the literature search included camp closure, separation of ill campers, environmental disinfection, and education on food preparation and hand hygiene. Conclusions: Youth camp-associated AGE outbreaks are caused by numerous pathogens every year. These outbreaks are facilitated by factors that include improper food preparation, inadequate cleaning and disinfection, shared accommodations, and contact with animals. Health education focused on proper hygiene and preventing disease transmission could help control or prevent these outbreaks.
The autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) interkingdom signaling system mediates chemical communication between bacteria and their mammalian hosts. The three signals are sensed by the QseC histidine kinase (HK) sensor. Salmonella enterica serovar Typhimurium is a pathogen that uses HKs to sense its environment and regulate virulence. Salmonella serovar Typhimurium invades epithelial cells and survives within macrophages. Invasion of epithelial cells is mediated by the type III secretion system (T3SS) encoded in Salmonella pathogenicity island 1 (SPI-1), while macrophage survival and systemic disease are mediated by the T3SS encoded in SPI-2. Here we show that QseC plays an important role in Salmonella serovar Typhimurium pathogenicity. A qseC mutant was impaired in flagellar motility, in invasion of epithelial cells, and in survival within macrophages and was attenuated for systemic infection in 129x1/SvJ mice. QseC acts globally, regulating expression of genes within SPI-1 and SPI-2 in vitro and in vivo (during infection of mice). Additionally, dopamine β-hydroxylase knockout (Dbh -/- ) mice that do not produce Epi or NE showed different susceptibility to Salmonella serovar Typhimurium infection than wild-type mice. These data suggest that the AI-3/Epi/NE signaling system is a key factor during Salmonella serovar Typhimurium pathogenesis in vitro and in vivo. Elucidation of the role of this interkingdom signaling system in Salmonella serovar Typhimurium should contribute to a better understanding of the complex interplay between the pathogen and the host during infection.
by
C Hendricks Brown;
David C. Mohr;
Carlos G. Gallo;
Christopher Mader;
Lawrence Palinkas;
Gina Wingood;
Guillermo Prado;
Sheppard G. Kellam;
Hilda Pantin;
Jeanne Poduska;
Robert Gibbons;
John McManus;
Mitsunori Ogihara;
Thomas Valente;
Fred Wulczyn;
Sara Czaja;
Geoff Sutcliffe;
Juan Villamar;
Christopher Jacobs
African Americans and Hispanics in the United States have much higher rates of HIV than non-minorities. There is now strong evidence that a range of behavioral interventions are efficacious in reducing sexual risk behavior in these populations. Although a handful of these programs are just beginning to be disseminated widely, we still have not implemented effective programs to a level that would reduce the population incidence of HIV for minorities. We proposed that innovative approaches involving computational technologies be explored for their use in both developing new interventions and in supporting wide-scale implementation of effective behavioral interventions. Mobile technologies have a place in both of these activities. First, mobile technologies can be used in sensing contexts and interacting to the unique preferences and needs of individuals at times where intervention to reduce risk would be most impactful. Second, mobile technologies can be used to improve the delivery of interventions by facilitators and their agencies. Systems science methods including social network analysis, agent-based models, computational linguistics, intelligent data analysis, and systems and software engineering all have strategic roles that can bring about advances in HIV prevention in minority communities. Using an existing mobile technology for depression and 3 effective HIV prevention programs, we illustrated how 8 areas in the intervention/implementation process can use innovative computational approaches to advance intervention adoption, fidelity, and sustainability.
by
Samantha I Pitts;
Nisa M Maruthur;
Gayle E Langley;
Tracy Pondo;
Kathleen A Shutt;
Rosemary Hollick;
Stephanie J Schrag;
Ann Thomas;
Megin Nichols;
Monica Farley;
James P Watt;
Lisa Miller;
William Schaffner;
Corinne Holtzman;
Lee H Harrison
Background. Rates of invasive group B Streptococcus (GBS) disease, obesity, and diabetes have increased in US adults. We hypothesized that obesity would be independently associated with an increased risk of invasive GBS disease. Methods. We identified adults with invasive GBS disease within Active Bacterial Core surveillance during 2010-2012 and used population estimates from the Behavioral Risk Factor Surveillance System to calculate invasive GBS incidence rates. We estimated relative risks (RRs) of invasive GBS using Poisson analysis with offset denominators, with obesity categorized as class I/II (body mass index [BMI] = 30-39.9 kg/m2) and class III (BMI ≥ 40.0 kg/m2). Results. In multivariable analysis of 4281 cases, the adjusted RRs of invasive GBS disease were increased for obesity (class I/ II: RR, 1.52; 95% confidence interval [CI], 1.14-2.02; and class III: RR, 4.87; 95% CI, 3.50-6.77; reference overweight) and diabetes (RR, 6.04; 95% CI, 4.77-7.65). The adjusted RR associated with class III obesity was 3-fold among persons with diabetes (95% CI, 1.38-6.61) and nearly 9-fold among persons without diabetes (95% CI, 6.41-12.46), compared with overweight. The adjusted RRs associated with diabetes varied by age and BMI, with the highest RR in young populations without obesity. Population attributable risks of invasive GBS disease were 27.2% for obesity and 40.1% for diabetes. Conclusions. Obesity and diabetes were associated with substantially increased risk of infection from invasive GBS. Given the population attributable risks of obesity and diabetes, interventions that reduce the prevalence of these conditions would likely reduce the burden of invasive GBS infection.
by
V Rouzier;
M Murrill;
S Kim;
L Naini;
J Shenje;
E Mitchell;
M Raesi;
M Lourens;
A Mendoza;
F Conradie;
N Suryavanshi;
M Hughes;
Sarita Shah;
G Churchyard;
S Swindells;
A Hesseling;
A Gupta
BACKGROUND: Pediatric household contacts (HHCs) of patients with multidrug-resistant TB (MDR-TB) are at high risk of infection and active disease. Evidence of caregiver willingness to give MDR-TB preventive therapy (TPT) to children is limited. METHODS : This was a cross-sectional study of HHCs of patients with MDR-TB to assess caregiver willingness to give TPT to children aged ,13 years. RESULT S : Of 743 adult and adolescent HHCs, 299 reported caring for children aged ,13 years of age. The median caregiver age was 35 years (IQR 27-48); 75% were women. Among caregivers, 89% were willing to give children MDR TPT. In unadjusted analyses, increased willingness was associated with TB-related knowledge (OR 5.1, 95% CI 2.3-11.3), belief that one can die of MDR-TB (OR 5.2, 95% CI 1.2-23.4), concern for MDR-TB transmission to child (OR 4.5, 95% CI 1.6-12.4), confidence in properly taking TPT (OR 4.5, 95% CI 1.6-12.6), comfort telling family about TPT (OR 5.5, 95% CI 2.1-14.3), and willingness to take TPT oneself (OR 35.1, 95% CI 11.0-112.8). CONCLUS IONS : A high percentage of caregivers living with MDR- or rifampicin-resistant TB patients were willing to give children a hypothetical MDRTPT. These results provide important evidence for the potential uptake of effective MDR TPT when implemented.
PURPOSE OF REVIEW: Despite eliciting an early antiviral T cell response, HIV-specific T cells are unable to prevent disease progression, partly because of their loss of effector functions, known as T cell exhaustion. Restoring this T cell functionality represents a critical step for regaining immunological control of HIV-1 replication, and may be fundamental for the development of a functional cure for HIV. In this context, the use of animal models is invaluable for evaluating the efficacy and mechanisms of novel therapeutics aimed at reinvigorating T cell functions. RECENT FINDINGS: Although nonhuman primates continue to be a mainstay for studying HIV pathogenesis and therapies, recent advances in humanized mouse models have improved their ability to recapitulate the features of cell exhaustion during HIV infection. Targeting coinhibitory receptors in HIV-infected and simian immunodeficiency virus (SIV)-infected animals has resulted in viral load reductions, presumably by reinvigorating the effector functions of T cells. Additionally, studies combining programmed death-1 (PD-1) blockade with suppressive antiretroviral therapy provide further support to the use of coinhibitory receptor blockades in restoring T cell function by delaying viral load rebound upon antiretroviral therapy interruption. Future in-vivo studies should build on recent in-vitro data, supporting the simultaneous targeting of multiple regulators of cell exhaustion. SUMMARY: In this review, we describe the most recent advances in the use of animal models for the study of cell exhaustion following HIV/SIV infection. These findings suggest that the use of animal models is increasingly critical in translating immunotherapeutics into clinical practice.