Facilitative glucose transporters (GLUT) mediate glucose uptake across the blood-brain-barrier into neurons and glia. Deficits in specific cerebral GLUT isoforms are linked to developmental and neurological dysfunction, but less is known about the range of variation in cerebral GLUT expression in normal conditions and the effects of environmental influences on cerebral GLUT expression. Knowing that puberty is a time of increased cerebral plasticity, metabolic demand, and shifts in hormonal balance for males and females, we first assessed gene expression of five GLUT subtypes in four brain regions in male and female adolescent and adult Wistar rats. The data indicated that sex differences in GLUT expression were most profound in the hypothalamus, and the transition from adolescence to adulthood had the most profound effect on GLUT expression in the hippocampus. Next, given the substantial energetic demands during adolescence and prior demonstrations of the adverse effects of adolescent stress, we determined the extent to which chronic stress altered GLUT expression in males and females in both adolescence and adulthood. Chronic stress significantly altered cerebral GLUT expression in males and females throughout both developmental stages but in a sexually dimorphic and brain region-specific manner. Collectively, our data demonstrate that cerebral GLUTs are expressed differentially based on brain region, sex, age, and stress exposure. These results suggest that developmental and environmental factors influence GLUT expression in multiple brain regions. Given the importance of appropriate metabolic balance within the brain, further assessment of the functional implications of life stage and environmentally-induced changes in GLUTs are warranted.
Stress is known to trigger seizures in patients with epilepsy, highlighting the physiological stress response as a possible therapeutic target for epilepsy treatment. Nevertheless, little is currently known about how a genetic predisposition to epilepsy interacts with the stress response to influence seizure outcome. To address this question, we examined the effect of acute stress on seizure outcome in mice with mutations in the voltage-gated sodium channel (VGSC) gene Scn8a. Scn8a mutants display spontaneous spike-wave discharges (SWDs) characteristic of absence epilepsy. We saw that the baseline frequency of SWDs in Scn8a mutants correlates closely with the diurnal activity of the hypothalamic-pituitary-adrenal (HPA) axis, with a peak in seizure activity occurring at around the same time as the peak in corticosterone (1700-1900. h). A 20-min acute restraint stress administered in the morning increases the frequency of spontaneous SWDs immediately following the stressor. Seizure frequency then returns to baseline levels within 3. h after stressor exposure, but the subsequent evening peak in seizure frequency is delayed and broadened, changes that persist into the next evening and are accompanied by long-lasting changes in HPA axis activity. Scn8a mutants also show increased anxiety-like behavior in mildly stressful situations. A 20-min acute restraint stress can also increase the severity and duration of chemically induced seizures in Scn8a mutants, changes that differ from wild-type littermates. Overall, our data show that a voltage-gated sodium channel mutation can alter the behavioral response to stress and can interact with the stress response to alter seizure outcome.
Background: The incidence of depression and anxiety disorders is twice as high in women than men; however, females exhibit less neuronal damage following an equivalent ischemic event. Microembolic stroke increases anxiety- and depressive-like behaviors in male rats but the behavioral repercussions in females are unknown.
Findings: Given the relative neuronal protection from stroke in ovary-intact females, female rats exposed to microembolic stroke may be behaviorally protected as compared to males. The data presented demonstrate that anxiety-like behavior is increased in males despite a comparable increase in microglial activation following microembolic stroke in both males and females.
Conclusions: These data suggest that males may be more behaviorally susceptible to the effects of microembolic stroke and further illustrate a dissociation between neuroinflammation and behavior in females.
Objective: Locomotor adaptation enables safe, efficient navigation among changing environments. We investigated how healthy young (HYA) and older (HOA) adults and persons with Parkinson's disease (PD) adapt to walking on a split-belt treadmill, retain adapted gait parameters during re-adaptation, and store aftereffects to conventional treadmill walking.
Methods: Thirteen PD, fifteen HYA, and fifteen HOA walked on a split-belt treadmill for ten minutes with one leg twice as fast as the other. Participants later re-adapted to the same conditions to assess retention of the split-belt gait pattern. After re-adaptation, we assessed aftereffects of this pattern during conventional treadmill walking.
Results: Persons with PD exhibited step length asymmetry throughout many adaptation and adaptive learning conditions. Early adaptation was similar across groups, though HYA and HOA continued to adapt into late adaptation while PD did not. Despite pervasive step length asymmetry among conditions which were symmetric in HYA and HOA, persons with PD demonstrated significant step length aftereffects during conventional treadmill walking after split-belt walking.
Conclusions: Though they may exhibit a default asymmetry under various walking conditions, persons with PD can adapt and store new walking patterns. Significance: Locomotor adaptation therapy may be effective in ameliorating asymmetric gait deficits in persons with PD.