Regulators of G protein signaling (RGS) proteins act as GTPase activating proteins to negatively regulate G protein-coupled receptor (GPCR) signaling. Although several RGS proteins including RGS2, RGS16, RGS10, and RGS18 are expressed in human and mouse platelets, the respective unique function(s) of each have not been fully delineated. RGS10 is a member of the D/R12 subfamily of RGS proteins and is expressed in microglia, macrophages, megakaryocytes, and platelets. We used a genetic approach to examine the role (s) of RGS10 in platelet activation in vitro and hemostasis and thrombosis in vivo. GPCR-induced aggregation, secretion, and integrin activation was much more pronounced in platelets from Rgs10-/- mice relative to wild type (WT). Accordingly, these mice had markedly reduced bleeding times and were more susceptible to vascular injury-associated thrombus formation than control mice. These findings suggest a unique, non-redundant role of RGS10 in modulating the hemostatic and thrombotic functions of platelets in mice. RGS10 thus represents a potential therapeutic target to control platelet activity and/or hypercoagulable states.
The generalized seizures of status epilepticus (SE) trigger a series of molecular and cellular events that produce cognitive deficits and can culminate in the development of epilepsy. Known early events include opening of the blood-brain barrier (BBB) and astrocytosis accompanied by activation of brain microglia. Whereas circulating monocytes do not infiltrate the healthy CNS, monocytes can enter the brain in response to injury and contribute to the immune response. We examined the cellular components of innate immune inflammation in the days following SE by discriminating microglia vs. brain-infiltrating monocytes. Chemokine receptor 2 (CCR2+) monocytes invade the hippocampus between 1 and 3 d after SE. In contrast, only an occasional CD3+ T lymphocyte was encountered 3 d after SE. The initial cellular sources of the chemokine CCL2, a ligand for CCR2, included perivascular macrophages and microglia. The induction of the proinflammatory cytokine IL-1β was greater in FACS-isolated microglia than in brain-invading monocytes. However, Ccr2 knockout mice displayed greatly reduced monocyte recruitment into brain and reduced levels of the proinflammatory cytokine IL-1β in hippocampus after SE, which was explained by higher expression of the cytokine in circulating and brain monocytes in wild-type mice. Importantly, preventing monocyte recruitment accelerated weight regain, reduced BBB degradation, and attenuated neuronal damage. Our findings identify brain-infiltrating monocytes as a myeloid-cell subclass that contributes to neuroinflammation and morbidity after SE. Inhibiting brain invasion of CCR2+ monocytes could represent a viable method for alleviating the deleterious consequences of SE.
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized primarily by the loss of dopaminergic neurons in substantia nigra. The pathogenic mechanisms of PD remain unclear, and no effective therapy currently exists to stop neurodegeneration in this debilitating disease. The identification of mutations in mitochondrial serine/threonine kinase PINK1 or E3 ubiquitin-protein ligase parkin as the cause of autosomal recessive PD opens up new avenues for uncovering neuroprotective pathways and PD pathogenic mechanisms. Recent studies reveal that PINK1 translocates to the outer mitochondrial membrane in response to mitochondrial depolarization and phosphorylates ubiquitin at the residue Ser65. The phosphorylated ubiquitin serves as a signal for activating parkin and recruiting autophagy receptors to promote clearance of damaged mitochondria via mitophagy. Emerging evidence has begun to indicate a link between impaired ubiquitin phosphorylation-dependent mitophagy and PD pathogenesis and supports the potential of Ser65-phosphorylated ubiquitin as a biomarker for PD. The new mechanistic insights and phenotypic screens have identified multiple potential therapeutic targets for PD drug discovery. This review highlights recent advances in understanding ubiquitin phosphorylation in mitochondrial quality control and PD pathogenesis and discusses how these findings can be translated into novel approaches for PD diagnostic and therapeutic development.