Aluminum is a ubiquitously abundant nonessential element. Aluminum has been associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, and dialysis encephalopathy. Many continue to regard aluminum as controversial although increasing evidence supports the implications of aluminum in the pathogenesis of AD. Aluminum causes the accumulation of tau protein and Aβ protein in the brain of experimental animals. Aluminum induces neuronal apoptosis in vivo and in vitro, either by endoplasmic stress from the unfolded protein response, by mitochondrial dysfunction, or a combination of them. Some, people who are exposed chronically to aluminum, either from through water and/or food, have not shown any AD pathology, apparently because their gastrointestinal barrier is more effective. This article is written keeping in mind mechanisms of action of aluminum neurotoxicity with respect to AD.
Cervical cancer screening using Papanicolaou's smear test has been highly effective in reducing death from this disease. However, this test is unaffordable in low- and middle-income countries, and its complexity has limited wide-scale uptake. Alternative tests, such as visual inspection with acetic acid or Lugol's iodine and human papillomavirus DNA, are sub-optimal in terms of specificity and sensitivity, thus sensitive and affordable tests with high specificity for on-site reporting are needed. Using proteomics and bioinformatics, we have identified valosin-containing protein (VCP) as differentially expressed between normal specimens and those with cervical intra-epithelial neoplasia grade 2/3 (CIN2/CIN3+) or worse. VCP-specific immunohistochemical staining (validated by a point-of-care technology) provided sensitive (93%) and specific (88%) identification of CIN2/CIN3+ and may serve as a critical biomarker for cervical-cancer screening. Future efforts will focus on further refinements to enhance analytic sensitivity and specificity of our proposed test, as well as on prototype development.
by
Matthew Jennis;
Che-Pei Kung;
Subhasree Basu;
Anna Budina-Kolomets;
Julia I-Ju Leu;
Sakina Khaku;
Jeremy P. Scott;
Kathy Q. Cai;
Michelle R. Campbell;
Devin K. Porter;
Xuting Wang;
Douglas A. Bell;
Xiaoxian Li;
David S. Garlick;
Qin Liu;
Monica Hollstein;
Donna L. George;
Maureen E. Murphy
A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism: Gls2 (glutaminase 2) and Sco2. We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.
by
Christopher J. Coke;
Kisha A. Scarlett;
Mahandranauth A. Chetram;
Kia J. Jones;
Brittney J. Sandifer;
Ahriea S. Davis;
Adam Marcus;
Cimona V. Hinton
The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonistdependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression.
MDM2 and XIAP are mutually regulated. Binding of MDM2 RING protein to the IRES region on XIAP mRNA results in MDM2 protein stabilization and enhanced XIAP translation. In this study, we developed a protein-RNA fluorescence polarization (FP) assay for high-throughput screening (HTS) of chemical libraries. Our FP-HTS identified eight inhibitors that blocked the MDM2 protein-XIAP RNA interaction, leading to MDM2 degradation. The compound-induced MDM2 downregulation resulted not only in inhibition of XIAP expression, but also in activation of p53, which contributed to cancer cell apoptosis in vitro and inhibition of cancer cell proliferation in vivo. Importantly, one of the MDM2/XIAP inhibitors, MX69, showed minimal inhibitory effect on normal human hematopoiesis in vitro and was very well tolerated in animal models.
The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-de-pendent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is an atypical insertion of a DNA-binding ARID domain and a histone-binding PHD domain into the Jumonji domain, which separates the catalytic domain into two fragments (JmjN and JmjC). Here we demonstrate that internal deletion of the ARID and PHD1 domains has a negligible effect on in vitro enzymatic kinetics of the KDM5 family of enzymes. We present a crystal structure of the linked JmjN-JmjC domain from KDM5A, which reveals that the linked domain fully reconstitutes the cofactor (metal ion and α-ketoglutarate) binding characteristics of other structurally characterized Jumonji domain demethylases. Docking studies with GSK-J1, a selective inhibitor of the KDM6/KDM5 subfamilies, identify critical residues for binding of the inhibitor to the reconstituted KDM5 Jumonji domain. Further, we found that GSK-J1 inhibited the demethylase activity of KDM5C with 8.5-fold increased potency compared with that of KDM5B at 1 mM α-ketoglutarate. In contrast, JIB-04 (a paninhibitor of the Jumonji demethylase superfamily) had the opposite effect and was ∼8-fold more potent against KDM5B than against KDM5C. Interestingly, the relative selectivity of JIB-04 toward KDM5B over KDM5C in vitro translates to a - 10-50-fold greater growth-inhibitory activity against breast cancer cell lines. These data define the minimal requirements for enzymatic activity of the KDM5 familytobethe linked JmjN-JmjC domain coupled with the immediate C-terminal helical zinc-binding domain and provide structural characterization of the linked JmjN-JmjC domain for the KDM5 family, which should prove useful in the design of KDM5 demethylase inhibitors with improved potency and selectivity.
Low circulating levels of vitamin D and high mammographic density (MD) have been associated with higher risk of breast cancer. Although some evidence suggested an inverse association between circulating vitamin D and MD, no studies have investigated this association among Mexican women. We examined whether serum 25−hydroxyvitamin D3 [25(OH)D3] levels were associated with MD in a cross-sectional study nested within the large Mexican Teacher's Cohort. This study included 491 premenopausal women with a mean age of 42.9 years. Serum 25(OH)D3 levels were measured by liquid chromatography/tandem mass spectrometry. Linear regression and non-linear adjusted models were used to estimate the association of MD with serum 25(OH)D3. Median serum 25(OH)D3 level was 27.3 (23.3–32.8) (ng/ml). Forty one (8%) women had 25(OH)D3 levels in the deficient range (< 20 ng/ml). Body mass index (BMI) and total physical activity were significantly correlated with 25(OH)D3 (r = −0.109, P = 0.019 and r = 0.095, P = 0.003, respectively). In the multivariable linear regression, no significant association was observed between 25(OH)D3 levels and MD overall. However, in stratified analyses, higher serum 25(OH)D3 levels (≥27.3 ng/ml) were significantly inversely associated with percent MD among women with BMI below the median (β = −0.52, P = 0.047). Although no significant association was observed between serum 25(OH)D3 and percent MD in the overall population, specific subgroups of women may benefit from higher serum 25(OH)D3 levels.
by
Bhavna Kumar;
Nicole V. Brown;
Benjamin J. Swanson;
Alessandra Schmitt;
Matthew Old;
Enver Ozer;
Amit Agrawal;
David E. Schuller;
Theodoros N. Teknos;
Pawan Kumar
Myoferlin (MYOF) is a member of ferlin family of membrane proteins that was originally discovered as a muscle specific protein. Recent studies have shown that myoferlin is also expressed in other cell types including endothelial cells and cancer cells. However, very little is known about the expression and biological role of myoferlin in head and neck cancer. In this study, we examined expression profile of myoferlin in oropharyngeal squamous cell carcinoma (OPSCC) and assessed its correlation with disease progression and patient outcome. In univariate analyses, nuclear MYOF was associated with poor overall survival (p < 0.001) and these patients had 5.5 times increased hazard of death (95% Cl 3.4-8.8). Nuclear myoferlin expression was also directly associated with tumor recurrence (p < 0.001), perineural invasion (p=0.008), extracapsular spread (p=0.009), higher T-stage (p=0.0015) and distant metastasis (p < 0.001). In addition, nuclear MYOF expression was directly associated with IL-6 (p < 0.001) and inversely with HPV status (p=0.0014). In a subgroup survival analysis, MYOF nuclear+/IL-6+ group had worst survival (84.6% mortality), whereas MYOF nuclear-/IL-6- had the best survival. Similarly, patients with HPV-negative/MYOFpositive tumors had worse survival compared to HPV-positive/MYOF-negative. Taken together, our results demonstrate for the first time that nuclear myoferlin expression independently predicts poor clinical outcome in OPSCC patients.
by
Ajai Chari;
Myo Htut;
Jeffrey A. Zonder;
Joseph W. Fay;
Andrzej Jakubowiak;
Joan B. Levy;
Kenneth Lau;
Steven M. Burt;
Brian J. Tunquist;
Brandi W. Hilder;
Selena A. Rush;
Duncan H. Walker;
Mieke Ptaszynski;
Jonathan Kaufman
BACKGROUND: Filanesib is a kinesin spindle protein inhibitor that has demonstrated encouraging activity in patients with recurrent/refractory multiple myeloma. Preclinical synergy with bortezomib was the rationale for the current phase 1 study.
METHODS: The current study was a multicenter study with an initial dose-escalation phase to determine the maximum tolerated dose of 2 schedules of filanesib plus bortezomib with and without dexamethasone, followed by a dose-expansion phase.
RESULTS: With the addition of prophylactic filgastrim, the maximum planned dose was attained: 1.3 mg/m2/day of bortezomib plus 40 mg of dexamethasone on days 1, 8, and 15 of a 28-day cycle, with filanesib given intravenously either at a dose of 1.5 mg/m2/day (schedule 1: days 1, 2, 15, and 16) or 3 mg/m2/day (schedule 2: days 1 and 15). The most common adverse events (assessed for severity using version 4.0 of the National Cancer Institute Common Terminology Criteria for Adverse Events) were transient, noncumulative neutropenia and thrombocytopenia with grade 3/4 events reported in 44% (16% in cycle 1 with filgastrim) and 29% of patients, respectively. A low (≤11%) overall rate of nonhematological grade 3/4 toxicity was observed. With a median of 3 prior lines of therapy and 56% of patients with disease that was refractory to proteasome inhibitors, the overall response rate was 20% (55 patients), and was 29% in 14 patients with proteasome inhibitors-refractory disease receiving filanesib at a dose of ≥1.25 mg/m2 (duration of response, 5.2 to ≥21.2 months).
CONCLUSIONS: The current phase 1 study established a dosing schedule for the combination of these agents that demonstrated a favorable safety profile with a low incidence of nonhematologic toxicity and manageable hematologic toxicity. The combination of filanesib, bortezomib, and dexamethasone appears to have durable activity in patients with recurrent/refractory multiple myeloma. Cancer 2016;122:3327–3335.
Previous data have demonstrated that administration of inflammatory cytokines or their inducers leads to altered basal ganglia function associated with reduced psychomotor speed. Decreased psychomotor speed, referred to clinically as psychomotor retardation, is a cardinal symptom of major depressive disorder (MDD) and has been associated with poor antidepressant treatment response. We therefore examined the association between plasma inflammatory markers and psychomotor speed in ninety-three un-medicated patients with MDD. Psychomotor speed was assessed by a range of neuropsychological tests from purely motor tasks (e.g. movement latency and finger tapping) to those that involved motor activity with increasing cognitive demand and cortical participation (e.g. Trails A and Digit Symbol Substitution Task (DSST)). Linear regression analyses were performed to determine the relationship of inflammatory markers and psychomotor task performance controlling for age, race, sex, education, body mass index, and severity of depression. MDD patients exhibited decreased psychomotor speed on all tasks relative to normative standards. Increased IL-6 was associated with decreased performance on simple and choice movement time tasks, whereas MCP-1 was associated with decreased performance on the finger tapping task and DSST. IL-10 was associated with increased performance on the DSST. In an exploratory principle component analysis including all psychomotor tasks, IL-6 was associated with the psychomotor speed factor. Taken together, the data indicate that a peripheral inflammatory profile including increased IL-6 and MCP-1 is consistently associated with psychomotor speed in MDD. These data are consistent with data demonstrating that inflammation can affect basal ganglia function, and indicate that psychomotor speed may be a viable outcome variable for anti-inflammatory therapies in depression and other neuropsychiatric disorders with increased inflammation.