MDM2 and XIAP are mutually regulated. Binding of MDM2 RING protein to the IRES region on XIAP mRNA results in MDM2 protein stabilization and enhanced XIAP translation. In this study, we developed a protein-RNA fluorescence polarization (FP) assay for high-throughput screening (HTS) of chemical libraries. Our FP-HTS identified eight inhibitors that blocked the MDM2 protein-XIAP RNA interaction, leading to MDM2 degradation. The compound-induced MDM2 downregulation resulted not only in inhibition of XIAP expression, but also in activation of p53, which contributed to cancer cell apoptosis in vitro and inhibition of cancer cell proliferation in vivo. Importantly, one of the MDM2/XIAP inhibitors, MX69, showed minimal inhibitory effect on normal human hematopoiesis in vitro and was very well tolerated in animal models.
Growth-associated protein 43 (GAP43), a protein kinase C (PKC)-activated phosphoprotein, is often implicated in axonal plasticity and regeneration. In this study, we found that GAP43 can be induced by the endotoxin lipopolysaccharide (LPS) in rat brain astrocytes both in vivo and in vitro. The LPS-induced astrocytic GAP43 expression was mediated by Toll-like receptor 4 and nuclear factor-κB (NF-κB)-and interleukin-6/signal transducer and activator of transcription 3 (STAT3)-dependent transcriptional activation. The overexpression of the PKC phosphorylation-mimicking GAP43S41D (constitutive active GAP43) in astrocytes mimicked LPS-induced process arborization and elongation, while application of a NF-[1]B inhibitory peptide TAT-NBD or GAP43S41A (dominant-negative GAP43) or knockdown of GAP43 all inhibited astrogliosis responses. Moreover, GAP43 knockdown aggravated astrogliosis-induced microglial activation and expression of proinflammatory cytokines. We also show that astrogliosis-conditioned medium from GAP43 knock-down astrocytes inhibited GAP43 phosphorylation and axonal growth, and increased neuronal damage in cultured rat cortical neurons. These proneurotoxic effects of astrocytic GAP43 knockdown were accompanied by attenuated glutamate uptake and expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in LPS-treated astrocytes. The regulation of EAAT2 expression involves actin polymerization-dependent activation of the transcriptional coactivator megakaryoblastic leukemia 1 (MKL1), which targets the serum response elements in the promoter of rat Slc1a2 gene encoding EAAT2. In sum, the present study suggests that astrocytic GAP43 mediates glial plasticity during astrogliosis, and provides beneficial effects for neuronal plasticity and survival and attenuation of microglial activation.
Numerous sub-cellular through system-level disturbances have been identified in over 1300 articles examining the superoxide dismutase-1 guanine 93 to alanine (SOD1-G93A) transgenic mouse amyotrophic lateral sclerosis (ALS) pathophysiology. Manual assessment of such a broad literature base is daunting. We performed a comprehensive informatics-based systematic review or field analysis to agnostically compute and map the current state of the field. Text mining of recaptured articles was used to quantify published data topic breadth and frequency. We constructed a nine-category pathophysiological function-based ontology to systematically organize and quantify the field's primary data. Results demonstrated that the distribution of primary research belonging to each category is: systemic measures an motor function, 59%; inflammation, 46%; cellular energetics, 37%; proteomics, 31%; neural excitability, 22%; apoptosis, 20%; oxidative stress, 18%; aberrant cellular chemistry, 14%; axonal transport, 10%. We constructed a SOD1-G93A field map that visually illustrates and categorizes the 85% most frequently assessed sub-topics. Finally, we present the literature-cited significance of frequently published terms and uncover thinly investigated areas. In conclusion, most articles individually examine at least two categories, which is indicative of the numerous underlying pathophysiological interrelationships. An essential future path is examination of cross-category pathophysiological interrelationships and their co-correspondence to homeostatic regulation and disease progression.
Inflammation and altered glutamate metabolism are two pathways implicated in the pathophysiology of depression. Interestingly, these pathways may be linked given that administration of inflammatory cytokines such as interferon-α to otherwise non-depressed controls increased glutamate in the basal ganglia and dorsal anterior cingulate cortex (dACC) as measured by magnetic resonance spectroscopy (MRS). Whether increased inflammation is associated with increased glutamate among patients with major depression is unknown. Accordingly, we conducted a cross-sectional study of 50 medication-free, depressed outpatients using single-voxel MRS, to measure absolute glutamate concentrations in basal ganglia and dACC. Multivoxel chemical shift imaging (CSI) was used to explore creatine-normalized measures of other metabolites in basal ganglia. Plasma and cerebrospinal fluid (CSF) inflammatory markers were assessed along with anhedonia and psychomotor speed. Increased log plasma C-reactive protein (CRP) was significantly associated with increased log left basal ganglia glutamate controlling for age, sex, race, body mass index, smoking status and depression severity. In turn, log left basal ganglia glutamate was associated with anhedonia and psychomotor slowing measured by the finger-tapping test, simple reaction time task and the Digit Symbol Substitution Task. Plasma CRP was not associated with dACC glutamate. Plasma and CSF CRP were also associated with CSI measures of basal ganglia glutamate and the glial marker myoinositol. These data indicate that increased inflammation in major depression may lead to increased glutamate in the basal ganglia in association with glial dysfunction and suggest that therapeutic strategies targeting glutamate may be preferentially effective in depressed patients with increased inflammation as measured by CRP.
The majority of trabecular outflow likely crosses Schlemm's canal (SC) endothelium through micron-sized pores, and SC endothelium provides the only continuous cell layer between the anterior chamber and episcleral venous blood. SC endothelium must therefore be sufficiently porous to facilitate outflow, while also being sufficiently restrictive to preserve the blood-aqueous barrier and prevent blood and serum proteins from entering the eye. To understand how SC endothelium satisfies these apparently incompatible functions, we examined how the diameter and density of SC pores affects retrograde diffusion of serum proteins across SC endothelium, i.e. from SC lumen into the juxtacanalicular tissue (JCT). Opposing retrograde diffusion is anterograde bulk flow velocity of aqueous humor passing through pores, estimated to be approximately 5 mm/s. As a result of this relatively large through-pore velocity, a mass transport model predicts that upstream (JCT) concentrations of larger solutes such as albumin are less than 1% of the concentration in SC lumen. However, smaller solutes such as glucose are predicted to have nearly the same concentration in the JCT and SC. In the hypothetical case that, rather than micron-sized pores, SC formed 65 nm fenestrae, as commonly observed in other filtration-active endothelia, the predicted concentration of albumin in the JCT would increase to approximately 50% of that in SC. These results suggest that the size and density of SC pores may have developed to allow SC endothelium to maintain the blood-aqueous barrier while simultaneously facilitating aqueous humor outflow.
We evaluated cellular metabolism profiles of HIV-1 and HIV-2 infected primary human monocyte-derived macrophages (MDMs). First, HIV-2 GL-AN displays faster production kinetics and greater amounts of virus as compared to HIV-1s: YU-2, 89.6 and JR-CSF. Second, quantitative LC-MS/MS metabolomics analysis demonstrates very similar metabolic profiles in glycolysis and TCA cycle metabolic intermediates between HIV-1 and HIV-2 infected macrophages, with a few notable exceptions. The most striking metabolic change in MDMs infected with HIV-2 relative to HIV-1-infected MDMs was the increased levels of quinolinate, a metabolite in the tryptophan catabolism pathway that has been linked to HIV/AIDS pathogenesis. Third, both HIV-1 and HIV-2 infected MDMs showed elevated levels of ribose-5-phosphate, a key metabolic component in nucleotide biosynthesis. Finally, HIV-2 infected MDMs display increased dNTP concentrations as predicted by Vpx-mediated SAMHD1 degradation. Collectively, these data show differential metabolic changes during HIV-1 and HIV-2 infection of macrophages.
Metastasis is responsible for >90% of cancer-related deaths. Complex signaling in cancer cells orchestrates the progression from a primary to a metastatic cancer. However, the mechanisms of these cellular changes remain elusive. We previously demonstrated that p90 ribosomal S6 kinase 2 (RSK2) promotes tumor metastasis. Here we investigated the role of RSK2 in the regulation of microtubule dynamics and its potential implication in cancer cell invasion and tumor metastasis. Stable knockdown of RSK2 disrupted microtubule stability and decreased phosphorylation of stathmin, a microtubule-destabilizing protein, at serine 16 in metastatic human cancer cells. We found that RSK2 directly binds and phosphorylates stathmin at the leading edge of cancer cells. Phosphorylation of stathmin by RSK2 reduced stathmin-mediated microtubule depolymerization. Moreover, overexpression of phospho-mimetic mutant stathmin S16D significantly rescued the decreased invasive and metastatic potential mediated by RSK2 knockdown in vitro and in vivo. Furthermore, stathmin phosphorylation positively correlated with RSK2 expression and metastatic cancer progression in primary patient tumor samples. Our finding demonstrates that RSK2 directly phosphorylates stathmin and regulates microtubule polymerization to provide a pro-invasive and pro-metastatic advantage to cancer cells. Therefore, the RSK2-stathmin pathway represents a promising therapeutic target and a prognostic marker for metastatic human cancers.
Tumor cells rely on aerobic glycolysis to generate ATP, namely the "Warburg" effect. 2-deoxyglucose (2-DG) is well characterized as a glycolytic inhibitor, but its effect on cellular signaling pathways has not been fully elucidated. Herein, we sought to investigate the effect of 2-DG on ERK function in lung cancer cells. We found that 2-DG inhibits ERK phosphorylation in a time and dose-dependent manner in lung cancer cells. This inhibition requires functional LKB1. LKB1 knockdown in LKB1 wildtype cells correlated with an increase in the basal level of p-ERK. Restoration of LKB1 in LKB1-null cells significantly inhibits ERK activation. Blocking AMPK function with AMPK inhibitor, AMPK siRNA or DN-AMPK diminishes the inhibitory effect of 2-DG on ERK, suggesting that 2-DG - induced ERK inhibition is mediated by LKB1/AMPK signaling. Moreover, IGF1-induced ERK phosphorylation is significantly decreased by 2-DG. Conversely, a subset of oncogenic mutants of K-Ras, the main upstream regulator of ERK, blocks 2-DG - induced LKB1/AMPK signaling. These findings reveal the potential cross-talk between LKB1/AMPK and ERK signaling and help to better understand the mechanism of action of 2-DG.
Here we tested impact of Tris (dibenzylideneacetone) dipalladium (Tris-DBA) on chronic lymphocytic leukemia (CLL) B-cell survival. Indeed, treatment of CLL B-cells with Tris-DBA induced apoptosis in a dose-dependent manner irrespective of IgVH mutational status. Further analyses suggest that Tris-DBA-induced apoptosis involves reduced expression of the anti-apoptotic proteins Bcl-xL, and XIAP with an upregulation of the pro-apoptotic protein BIM in CLL B-cells. Our findings also indicate that Tris-DBA targets the ribosomal protein (rp)-S6, an essential component of the Akt/mTOR signaling axis in CLL B-cells. Of interest, CLL bone marrow stromal cells were unable to protect the leukemic B cells from Tris-DBA-induced apoptosis in an in vitro co-culture system. Finally, co-administration of Tris-DBA and the purine nucleoside analog fludarabine (F-ara-A) augmented CLL B-cell apoptosis levels in vitro showing synergistic effects. In total, Tris-DBA is effective at inducing apoptosis in CLL B-cells even in the presence of stromal cells likely by targeting directly the signal mediator, rpS6.
by
Yuuki Shimizu;
Chad K. Nicholson;
Jonathan P. Lambert;
Larry A. Barr;
Nicholas Kuek;
David Herszenhaut;
Lin Tan;
Toyoaki Murohara;
Jason M. Hansen;
Ahsan Husain;
Nawazish Naqvi;
John Calvert
Background - Therapeutic strategies aimed at increasing hydrogen sulfide (H 2 S) levels exert cytoprotective effects in various models of cardiovascular injury. However, the underlying mechanism(s) responsible for this protection remain to be fully elucidated. Nuclear factor E2-related factor 2 (Nrf2) is a cellular target of H 2 S and facilitator of H 2 S-mediated cardioprotection after acute myocardial infarction. Here, we tested the hypothesis that Nrf2 mediates the cardioprotective effects of H 2 S therapy in the setting of heart failure.
Methods and Results - Mice (12 weeks of age) deficient in Nrf2 (Nrf2 KO; C57BL/6J background) and wild-type littermates were subjected to ischemic-induced heart failure. Wild-type mice treated with H 2 S in the form of sodium sulfide (Na 2 S) displayed enhanced Nrf2 signaling, improved left ventricular function, and less cardiac hypertrophy after the induction of heart failure. In contrast, Na 2 S therapy failed to provide protection against heart failure in Nrf2 KO mice. Studies aimed at evaluating the underlying cardioprotective mechanisms found that Na 2 S increased the expression of proteasome subunits, resulting in an increased proteasome activity and a reduction in the accumulation of damaged proteins. In contrast, Na 2 S therapy failed to enhance the proteasome and failed to attenuate the accumulation of damaged proteins in Nrf2 KO mice. Additionally, Na 2 S failed to improve cardiac function when the proteasome was inhibited.
Conclusions - These findings indicate that Na 2 S therapy enhances proteasomal activity and function during the development of heart failure in an Nrf2-dependent manner and that this enhancement leads to attenuation in cardiac dysfunction.