by
Fei Liu;
Michael Koval;
Shoba Ranganathan;
Susan Fanayan;
William S. Hancock;
Emma K. Lundberg;
Ronald C. Beavis;
Lydie Lane;
Paula Duek;
Leon McQuade;
Neil L. Kelleher;
Mark S. Baker
Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation.
A discovery study was carried out where serum samples from 22 systemic lupus erythematosus (SLE) patients and matched healthy controls were hybridized to antibody-coated glass slide arrays that interrogated the level of 274 human proteins. On the basis of these screens, 48 proteins were selected for ELISA-based validation in an independent cohort of 28 SLE patients. Whereas AXL, ferritin, and sTNFRII were significantly elevated in patients with active lupus nephritis (LN) relative to SLE patients who were quiescent, other molecules such as OPN, sTNFRI, sTNFRII, IGFBP2, SIGLEC5, FAS, and MMP10 exhibited the capacity to distinguish SLE from healthy controls with ROC AUC exceeding 90%, all with p < 0.001 significance. These serum markers were next tested in a cohort of 45 LN patients, where serum was obtained at the time of renal biopsy. In these patients, sTNFRII exhibited the strongest correlation with eGFR (r = −0.50, p = 0.0014) and serum creatinine (r = 0.57, p = 0.0001), although AXL, FAS, and IGFBP2 also correlated with these clinical measures of renal function. When concurrent renal biopsies from these patients were examined, serum FAS, IGFBP2, and TNFRII showed significant positive correlations with renal pathology activity index, while sTNFRII displayed the highest correlation with concurrently scored renal pathology chronicity index (r = 0.57, p = 0.001). Finally, in a longitudinal cohort of seven SLE patients examined at ∼3 month intervals, AXL, ICAM-1, IGFBP2, SIGLEC5, sTNFRII, and VCAM-1 demonstrated the ability to track with concurrent disease flare, with significant subject to subject variation. In summary, serum proteins have the capacity to identify patients with active nephritis, flares, and renal pathology activity or chronicity changes, although larger longitudinal cohort studies are warranted.