Previous data have demonstrated that administration of inflammatory cytokines or their inducers leads to altered basal ganglia function associated with reduced psychomotor speed. Decreased psychomotor speed, referred to clinically as psychomotor retardation, is a cardinal symptom of major depressive disorder (MDD) and has been associated with poor antidepressant treatment response. We therefore examined the association between plasma inflammatory markers and psychomotor speed in ninety-three un-medicated patients with MDD. Psychomotor speed was assessed by a range of neuropsychological tests from purely motor tasks (e.g. movement latency and finger tapping) to those that involved motor activity with increasing cognitive demand and cortical participation (e.g. Trails A and Digit Symbol Substitution Task (DSST)). Linear regression analyses were performed to determine the relationship of inflammatory markers and psychomotor task performance controlling for age, race, sex, education, body mass index, and severity of depression. MDD patients exhibited decreased psychomotor speed on all tasks relative to normative standards. Increased IL-6 was associated with decreased performance on simple and choice movement time tasks, whereas MCP-1 was associated with decreased performance on the finger tapping task and DSST. IL-10 was associated with increased performance on the DSST. In an exploratory principle component analysis including all psychomotor tasks, IL-6 was associated with the psychomotor speed factor. Taken together, the data indicate that a peripheral inflammatory profile including increased IL-6 and MCP-1 is consistently associated with psychomotor speed in MDD. These data are consistent with data demonstrating that inflammation can affect basal ganglia function, and indicate that psychomotor speed may be a viable outcome variable for anti-inflammatory therapies in depression and other neuropsychiatric disorders with increased inflammation.
Inflammation and altered glutamate metabolism are two pathways implicated in the pathophysiology of depression. Interestingly, these pathways may be linked given that administration of inflammatory cytokines such as interferon-α to otherwise non-depressed controls increased glutamate in the basal ganglia and dorsal anterior cingulate cortex (dACC) as measured by magnetic resonance spectroscopy (MRS). Whether increased inflammation is associated with increased glutamate among patients with major depression is unknown. Accordingly, we conducted a cross-sectional study of 50 medication-free, depressed outpatients using single-voxel MRS, to measure absolute glutamate concentrations in basal ganglia and dACC. Multivoxel chemical shift imaging (CSI) was used to explore creatine-normalized measures of other metabolites in basal ganglia. Plasma and cerebrospinal fluid (CSF) inflammatory markers were assessed along with anhedonia and psychomotor speed. Increased log plasma C-reactive protein (CRP) was significantly associated with increased log left basal ganglia glutamate controlling for age, sex, race, body mass index, smoking status and depression severity. In turn, log left basal ganglia glutamate was associated with anhedonia and psychomotor slowing measured by the finger-tapping test, simple reaction time task and the Digit Symbol Substitution Task. Plasma CRP was not associated with dACC glutamate. Plasma and CSF CRP were also associated with CSI measures of basal ganglia glutamate and the glial marker myoinositol. These data indicate that increased inflammation in major depression may lead to increased glutamate in the basal ganglia in association with glial dysfunction and suggest that therapeutic strategies targeting glutamate may be preferentially effective in depressed patients with increased inflammation as measured by CRP.
Major medical illnesses are associated with increased risk for depression and alterations in hypothalamic–pituitary–adrenal (HPA) axis function. Pathophysiological processes such as inflammation that occur as a part of medical illnesses and their treatments have been shown to cause depressive symptoms, and may also affect the HPA axis. We previously reported that patients with hepatitis C virus chronically administered interferon (IFN)-alpha develop increased evening plasma cortisol concentrations and a flattened diurnal cortisol slope, which correlated with increased tumor necrosis factor (TNF) and its soluble receptor 2 (sTNFR2). Increased TNF and sTNFR2 were further correlated with depression and fatigue scores. The current study examined whether flattened cortisol slope might be secondary to reduced glucocorticoid receptor (GR) sensitivity, by measuring glucocorticoid negative feedback to dexamethasone (DEX) administration followed by corticotropin releasing hormone (CRH) challenge. In an exploratory analysis, 28 male and female patients with hepatitis C virus were studied at baseline (Visit 1) and after 12 weeks (Visit 2) of either IFN-alpha plus ribavirin (n = 17) or no treatment (n = 11). Patients underwent dexamethasone DEX–CRH challenge, neuropsychiatric assessments, and measurement of plasma TNF and sTNFR2 during each visit. IFN-alpha did not affect neuroendocrine responses following CRH but did increase post-DEX cortisol, which was correlated with flattening of the diurnal cortisol slope (r = 0.57, p = 0.002) and with increased depression scores (r = 0.38, p = 0.047). Furthermore, the change in post-DEX cortisol was associated with IFN-alpha-induced increase in sTNFR2 (r = 0.51, p = 006), which was in turn correlated with depression (r = 0.63, p < 0.001) and fatigue (r = 0.51, p = 0.005) scores. Whereas the relationship between sTNFR2 and depression scores were independent of the change in post-DEX cortisol, the correlation between post-DEX cortisol and depression scores was not significant when controlling for sTNFR2. These findings suggest that inflammation induced in patients with hepatitis C virus during IFN-alpha therapy precipitates decreased GR sensitivity to lead to a flattened diurnal cortisol slope. Decreased GR sensitivity may in turn further increase inflammation and its ultimate effects on behavior. Treatments that target inflammation and/or GR sensitivity may reduce depressive symptoms associated with medical illnesses.