The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-de-pendent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is an atypical insertion of a DNA-binding ARID domain and a histone-binding PHD domain into the Jumonji domain, which separates the catalytic domain into two fragments (JmjN and JmjC). Here we demonstrate that internal deletion of the ARID and PHD1 domains has a negligible effect on in vitro enzymatic kinetics of the KDM5 family of enzymes. We present a crystal structure of the linked JmjN-JmjC domain from KDM5A, which reveals that the linked domain fully reconstitutes the cofactor (metal ion and α-ketoglutarate) binding characteristics of other structurally characterized Jumonji domain demethylases. Docking studies with GSK-J1, a selective inhibitor of the KDM6/KDM5 subfamilies, identify critical residues for binding of the inhibitor to the reconstituted KDM5 Jumonji domain. Further, we found that GSK-J1 inhibited the demethylase activity of KDM5C with 8.5-fold increased potency compared with that of KDM5B at 1 mM α-ketoglutarate. In contrast, JIB-04 (a paninhibitor of the Jumonji demethylase superfamily) had the opposite effect and was ∼8-fold more potent against KDM5B than against KDM5C. Interestingly, the relative selectivity of JIB-04 toward KDM5B over KDM5C in vitro translates to a - 10-50-fold greater growth-inhibitory activity against breast cancer cell lines. These data define the minimal requirements for enzymatic activity of the KDM5 familytobethe linked JmjN-JmjC domain coupled with the immediate C-terminal helical zinc-binding domain and provide structural characterization of the linked JmjN-JmjC domain for the KDM5 family, which should prove useful in the design of KDM5 demethylase inhibitors with improved potency and selectivity.
by
John Horton;
Xu Liu;
Molly Gale;
Lizhen Wu;
John R. Shanks;
Xing Zhang;
Philip J. Webber;
Joshua S.K. Bell;
Stephen C Kales;
Bryan T Mott;
Ganesha Rai;
Daniel J Jansen;
Mark J Henderson;
Daniel J Urban;
Matthew D Hall;
Anton Simeonov;
David J Maloney;
Margaret A. Johns;
Haian Fu;
Ajit Jadhav;
Paula Vertino;
Qin Yan;
Xiaodong Cheng
The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases removes methyl groups from methylated lysine 4 of histone H3. Accumulating evidence supports a role for KDM5 family members as oncogenic drivers. We compare the in vitro inhibitory properties and binding affinity of ten diverse compounds with all four family members, and present the crystal structures of the KDM5A-linked Jumonji domain in complex with eight of these inhibitors in the presence of Mn(II). All eight inhibitors structurally examined occupy the binding site of α-ketoglutarate, but differ in their specific binding interactions, including the number of ligands involved in metal coordination. We also observed inhibitor-induced conformational changes in KDM5A, particularly those residues involved in the binding of α-ketoglutarate, the anticipated peptide substrate, and intramolecular interactions. We discuss how particular chemical moieties contribute to inhibitor potency and suggest strategies that might be utilized in the successful design of selective and potent epigenetic inhibitors.
The multidomain zinc finger (ZnF) protein PRDM9 (PRD1–BF1–RIZ1 homologous domain-containing 9) is thought to influence the locations of recombination hot spots during meiosis by sequence-specific DNA binding and trimethylation of histone H3 Lys4. The most common variant of human PRDM9, allele A (hPRDM9A), recognizes the consensus sequence 5′-NCCNCCNTNNCCNCN-3′. We cocrystallized ZnF8–12 of hPRDM9A with an oligonucleotide representing a known hot spot sequence and report the structure here. ZnF12 was not visible, but ZnF8–11, like other ZnF arrays, follows the right-handed twist of the DNA, with the α helices occupying the major groove. Each α helix makes hydrogen-bond (H-bond) contacts with up to four adjacent bases, most of which are purines of the complementary DNA strand. The consensus C:G base pairs H-bond with conserved His or Arg residues in ZnF8, ZnF9, and ZnF11, and the consensus T:A base pair H-bonds with an Asn that replaces His in ZnF10. Most of the variable base pairs (N) also engage in H bonds with the protein. These interactions appear to compensate to some extent for changes from the consensus sequence, implying an adaptability of PRDM9 to sequence variations. We investigated the binding of various alleles of hPRDM9 to different hot spot sequences. Allele C was found to bind a C-specific hot spot with higher affinity than allele A bound A-specific hot spots, perhaps explaining why the former is dominant in A/C heterozygotes. Allele L13 displayed higher affinity for several A-specific sequences, allele L9/L24 displayed lower affinity, and allele L20 displayed an altered sequence preference. These differences can be rationalized structurally and might contribute to the variation observed in the locations and activities of meiotic recombination hot spots.