by
Ciprian B. Anea;
Maoxiang Zhang;
Feng Chen;
M. Irfan Ali;
Charles Hart;
David W. Stepp;
Yevgeniy O. Kovalenkov;
Ana-Maria Merloiu;
Paramita Pati;
David Fulton;
R. Daniel Rudic
Recent studies have shown that circadian clock disruption is associated with pathological remodeling in the arterial structure and vascular stiffness. Moreover, chronic circadian disruption is associated with dysfunction in endothelial responses and signaling. Reactive oxygen species have emerged as key regulators in vascular pathology. Previously, we have demonstrated that circadian clock dysfunction exacerbates superoxide production through eNOS uncoupling. To date, the impact of circadian clock mutation on vascular NADPH oxidase expression and function is not known. The goal in the current study was to determine if the circadian clock controls vascular Nox4 expression and hydrogen peroxide formation in arteries, particularly in endothelial and vascular smooth muscle cells. In aorta, there was an increase in hydrogen peroxide and Nox4 expression in mice with a dysfunctional circadian rhythm (Bmal1-KO mice). In addition, the Nox4 gene promoter is activated by the core circadian transcription factors. Lastly, in synchronized cultured human endothelial cells, Nox4 gene expression exhibited rhythmic oscillations. These data reveal that the circadian clock plays an important role in the control of Nox4 and disruption of the clock leads to subsequent production of reaction oxygen species.
Background Endogenous regenerative capacity, assessed as circulating progenitor cell (PC) numbers, is an independent predictor of adverse outcomes in patients with cardiovascular disease. However, their predictive role in heart failure (HF) remains controversial. We assessed the relationship between the number of circulating PCs and the pathogenesis and severity of HF and their impact on incident HF events. Methods and Results We recruited 2049 adults of which 651 had HF diagnosis. PCs were enumerated by flow cytometry as CD45med+blood mononuclear cells expressing CD34, CD133, vascular endothelial growth factor receptor-2, and chemokine (C-X-C motif) receptor 4 epitopes. PC subsets were lower in number in HF and after adjustment for clinical characteristics in multivariable analyses, a low CD34+and CD34+/CXCR+cell count remained independently associated with a diagnosis of HF (P<0.01). PC levels were not significantly different in reduced versus preserved ejection fraction patients. In 514 subjects with HF, there were 98 (19.1%) all-cause deaths during a 2.2±1.5-year follow-up. In a Cox regression model adjusting for clinical variables, hematopoietic-enriched PCs (CD34+, CD34+/CD133+, and CD34+/CXCR4+) were independent predictors of all-cause death (hazard ratio 2.0, 1.6, 1.6-fold higher mortality, respectively; P<0.03) among HF patients. Endothelial-enriched PCs (CD34+/VEGF+) were independent predictors of mortality in patients with HF with preserved ejection fraction only (hazard ratio, 5.0; P=0.001). Conclusions PC levels are lower in patients with HF, and lower PC counts are strongly and independently predictive of mortality. Strategies to increase PCs and exogenous stem cell therapies designed to improve regenerative capacity in HF, especially, in HF with preserved ejection fraction, need to be further explored.
Background-Food deserts (FD), neighborhoods defined as low-income areas with low access to healthy food, are a public health concern. We evaluated the impact of living in FD on cardiovascular risk factors and subclinical cardiovascular disease (CVD) with the hypothesis that people living in FD will have an unfavorable CVD risk profile. We further assessed whether the impact of FD on these measures is driven by area income, individual household income, or area access to healthy food. Methods and Results-We studied 1421 subjects residing in the Atlanta metropolitan area who participated in the METAHealth study (Morehouse and Emory Team up to Eliminate Health Disparities; n=712) and the Predictive Health study (n=709). Participants' zip codes were entered into the United States Food Access Research Atlas for FD status. Demographic data, metabolic profiles, hs-CRP (high-sensitivity C-reactive protein) levels, oxidative stress markers (glutathione and cystine), and arterial stiffness were evaluated. Mean age was 49.4 years, 38.5% male and 36.6% black. Compared with those not living in FD, subjects living in FD (n=187, 13.2%) had a higher prevalence of hypertension and smoking, higher body mass index, fasting glucose, and 10-year risk for CVD. They also had higher hs-CRP (P=0.014), higher central augmentation index (P=0.015), and lower glutathione level (P=0.003), indicative of increased oxidative stress. Area income and individual income, rather than food access, were associated with CVD risk measures. In a multivariate analysis that included food access, area income and individual income, both low-income area and low individual household income, were independent predictors of a higher 10-year risk for CVD. Only low individual income was an independent predictor of higher hs-CRP and augmentation index. Conclusions-Although living in FD is associated with a higher burden of cardiovascular risk factors and preclinical indices of CVD, these associations are mainly driven by area income and individual income rather than access to healthy food.
Among the many organ systems affected by harmful alcohol use, the lungs are particularly susceptible to infections and injury. The mechanisms responsible for rendering people with alcohol use disorder (AUD) vulnerable to lung damage include alterations in host defenses of the upper and lower airways, disruption of alveolar epithelial barrier integrity, and alveolar macrophage immune dysfunction. Collectively, these derangements encompass what has been termed the "alcoholic lung" phenotype. Alcohol-related reductions in antioxidant levels also may contribute to lung disease in people with underlying AUD. In addition, researchers have identified several regulatory molecules that may play crucial roles in the alcohol-induced disease processes. Although there currently are no approved therapies to combat the detrimental effects of chronic alcohol consumption on the respiratory system, these molecules may be potential therapeutic targets to guide future investigation.
Background: Plasma metabolites are associated with cognitive and physical function in the elderly. Because cerebral small vessel disease (SVD) and neurodegeneration are common causes of cognitive and physical function decline, the primary objective of this study was to investigate the associations of six plasma metabolites (two plasma phosphatidylcholines [PCs]: PC aa C36:5 and PC aa 36:6 and four sphingomyelins [SMs]: SM C26:0, SM [OH] C22:1, SM [OH] C22:2, SM [OH] C24:1) with magnetic resonance imaging (MRI) features of cerebral SVD and neurodegeneration in older adults.
Methods: This study included 238 older adults in the Atherosclerosis Risk in Communities study at the fifth exam. Multiple linear regression was used to assess the association of each metabolite (log-transformed) in separate models with MRI measures except lacunar infarcts, for which binary logistic regression was used.
Results: Higher concentrations of plasma PC aa C36:5 had adverse associations with MRI features of cerebral SVD (odds ratio of 1.69 [95% confidence interval: 1.01, 2.83] with lacunar infarct, and beta of 0.16 log [cm3] [0.02, 0.30] with log [White Matter Hyperintensities (WMH) volume]) while higher concentrations of 3 plasma SM (OH)s were associated with higher total brain volume (beta of 12.0 cm3 [5.5, 18.6], 11.8 cm3 [5.0, 18.6], and 7.3 cm3 [1.2, 13.5] for SM [OH] C22:1, SM [OH] C22:2, and SM [OH] C24:1, respectively).
Conclusions: This study identified associations between certain plasma metabolites and brain MRI measures of SVD and neurodegeneration in older adults, particularly higher SM (OH) concentrations with higher total brain volume.
Pulmonary hypertension (PH) is a progressive disorder that causes significant morbidity and mortality despite existing therapies. PH pathogenesis is characterized by metabolic derangements that increase pulmonary artery smooth muscle cell (PASMC) proliferation and vascular remodeling. PH-associated decreases in peroxisome proliferator-activated receptor g (PPARg) stimulate PASMC proliferation, and PPARg in coordination with PPARg coactivator 1a (PGC1a) regulates mitochondrial gene expression and biogenesis. To further examine the impact of decreases in PPARg expression on human PASMC (HPASMC) mitochondrial function, we hypothesized that depletion of either PPARg or PGC1a perturbs mitochondrial structure and function to stimulate PASMC proliferation. To test this hypothesis, HPASMCs were exposed to hypoxia and treated pharmacologically with the PPARg antagonist GW9662 or with siRNA against PPARg or PGC1a for 72 hours. HPASMC proliferation (cell counting), target mRNA levels (qRT-PCR), target protein levels (Western blotting), mitochondria-derived H 2 O 2 (confocal immunofluorescence), mitochondrial mass and fragmentation, and mitochondrial bioenergetic profiling were determined. Hypoxia or knockdown of either PPARg or PGC1a increased HPASMC proliferation, enhanced mitochondria-derived H 2 O 2 , decreased mitochondrial mass, stimulated mitochondrial fragmentation, and impaired mitochondrial bioenergetics. Taken together, these findings provide novel evidence that loss of PPARg diminishes PGC1a and stimulates derangements in mitochondrial structure and function that cause PASMC proliferation. Overexpression of PGC1a reversed hypoxia-induced HPASMC derangements. This study identifies additional mechanistic underpinnings of PH, and provides support for the notion of activating PPARg as a novel therapeutic strategy in PH.
Background: Alcohol significantly impairs antioxidant defenses and innate immune function in the lung and increases matrix metalloproteinase 9 (MMP-9) activity. The receptor for advanced glycation end products (RAGE) is a well-characterized marker of lung injury that is cleaved by MMP-9 into soluble RAGE and has not yet been examined in the alcoholic lung. We hypothesized that chronic alcohol ingestion would impair RAGE signaling via MMP-9 in the alveolar macrophage and thereby impair innate immune function.
Materials and Methods: Primary alveolar macrophages were isolated from control-fed or alcohol-fed rats. Real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assays were performed to evaluate RAGE expression. Silencing of MMP-9 ribonucleic acid (RNA) in a rat alveolar macrophage cell line was confirmed by qRT-PCR, and immunofluorescence (IF) was used to assess the association between alcohol, MMP-9, and RAGE. Phagocytosis was assessed using flow cytometry. Sulforaphane and glutathione were used to assess the relationship between oxidative stress and RAGE. Results: RAGE messenger RNA expression was significantly increased in the alveolar macrophages of alcohol-fed rats, but IF showed that membrane-bound RAGE protein expression was decreased. Lavage fluid demonstrated increased levels of soluble RAGE (sRAGE). Decreasing MMP-9 expression using si-MMP-9 abrogated the effects of alcohol on RAGE protein. Phagocytic function was suppressed by direct RAGE inhibition, and the impairment was reversed by antioxidant treatment.
Conclusions: Chronic alcohol ingestion reduces RAGE protein expression and increases the amount of sRAGE in alveolar lavage fluid, likely via cleavage by MMP-9. In addition, it impairs phagocytic function. Antioxidants restore membrane-bound RAGE and phagocytic function.
Beta amyloid (Aβ) is well accepted to play a central role in the pathogenesis of Alzheimer's disease (AD). The present work evaluated the therapeutic effects of low-level laser irradiation (LLI) on Aβ-induced neurotoxicity in rat hippocampus. Aβ 1–42 was injected bilaterally to the hippocampus CA1 region of adult male rats, and 2-minute daily LLI treatment was applied transcranially after Aβ injection for 5 consecutive days. LLI treatment suppressed Aβ-induced hippocampal neurodegeneration and long-term spatial and recognition memory impairments. Molecular studies revealed that LLI treatment: (1) restored mitochondrial dynamics, by altering fission and fusion protein levels thereby suppressing Aβ-induced extensive fragmentation; (2) suppressed Aβ-induced collapse of mitochondrial membrane potential; (3) reduced oxidized mitochondrial DNA and excessive mitophagy; (4) facilitated mitochondrial homeostasis via modulation of the Bcl-2-associated X protein/B-cell lymphoma 2 ratio and of mitochondrial antioxidant expression; (5) promoted cytochrome c oxidase activity and adenosine triphosphate synthesis; (6) suppressed Aβ-induced glucose-6-phosphate dehydrogenase and nicotinamide adenine dinucleotide phosphate oxidase activity; (7) enhanced the total antioxidant capacity of hippocampal CA1 neurons, whereas reduced the oxidative damage; and (8) suppressed Aβ-induced reactive gliosis, inflammation, and tau hyperphosphorylation. Although development of AD treatments has focused on reducing cerebral Aβ levels, by the time the clinical diagnosis of AD or mild cognitive impairment is made, the brain is likely to have already been exposed to years of elevated Aβ levels with dire consequences for multiple cellular pathways. By alleviating a broad spectrum of Aβ-induced pathology that includes mitochondrial dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, and tau pathology, LLI could represent a new promising therapeutic strategy for AD.
Background: Chronic alcohol ingestion induces the expression of transforming growth factor beta-1(TGFβ1), inhibits nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated activation of the antioxidant response element (ARE), depletes alveolar glutathione pools, and potentiates acute lung injury. In this study, we examined the mechanistic relationship between TGFβ1 and Nrf2-ARE signaling in the experimental alcoholic lung. Methods: Wild-type mice were treated ± alcohol in drinking water for 8 weeks and their lungs were assessed for Nrf2 expression. In parallel, mouse lung fibroblasts were cultured ± alcohol and treated ± sulforaphane (SFP; an activator of Nrf2), ±TGFβ1, ±TGFβ1 neutralizing antibody, and/or ±activin receptor-like kinase 5 inhibitors (to block TGβ1 receptor signaling) and then analyzed for the expression of Nrf2, Kelch-like ECH-associated protein 1 (Keap1) and TGFβ1, Nrf2-ARE activity, and the expression of the Nrf2-ARE-dependent antioxidants glutathione s-transferase theta 2 (GSTT2) and glutamate-cysteine ligase catalytic subunit (GCLC). Finally, silencing RNA (siRNA) of Nrf2 was then performed prior to alcohol exposure and subsequent analysis of TGFβ1 expression. Results: Alcohol treatment in vivo or in vitro decreased Nrf2 expression in murine whole lung and lung fibroblasts, respectively. In parallel, alcohol exposure in vitro decreased Keap1 gene and protein expression in lung fibroblasts. Furthermore, alcohol exposure increased TGFβ1 expression but decreased Nrf2-ARE activity and expression of the ARE-dependent genes for GSTT2 and GCLC. These effects of alcohol were prevented by treatment with SFP; in contrast, Nrf2 SiRNA expression exacerbated alcohol-induced TGFβ1 expression. Finally, TGFβ1 treatment directly suppressed Nrf2-ARE activity whereas blocking TGFβ1 signaling attenuated alcohol-induced suppression of Nrf2-ARE activity. Conclusions: Alcohol-induced oxidative stress is mediated by TGFβ1, which suppresses Nrf2-ARE-dependent expression of antioxidant defenses and creates a vicious cycle that feeds back to further increase TGFβ1 expression. These effects of alcohol can be mitigated by activation of Nrf2, suggesting a potential therapy in individuals at risk for lung injury due to alcohol abuse.
by
Markus P. Schneider;
Jennifer C. Sullivan;
Paul F. Wach;
Erika I. Boesen;
Tatsuo Yamamoto;
Tohru Fukai;
David Harrison;
David G. Pollock;
Jennifer S. Pollock
Extracellular superoxide dismutase (SOD3) is highly expressed in renal tissues and a critical regulator of vascular function. We hypothesized that deletion of SOD3 would attenuate recovery of renal blood flow (RBF) and increase oxidative stress and injury following renal ischemia/reperfusion (I/R). To test this, we evaluated SOD expression and activity, basal superoxide production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in kidneys from male and female wild-type (WT) and SOD3-knockout mice. RBF, measured using an ultrasonic flow probe, and histological indices of oxidative stress and injury were assessed after 1 h of ischemia. Following ischemia, RBF was attenuated in kidneys from male, but not female, knockout mice compared with their WT counterparts. Total SOD activity was significantly reduced in male knockout compared with WT male mice but was similar in female mice of both genotypes, suggesting upregulated SOD1 activity. Basal superoxide production and NADPH oxidase activity were unrelated to the differences in RBF. After 24 h, kidneys from both genders of knockout mice were found to have more oxidative stress (3-nitrotyrosine immunohistochemistry) and renal cast formation than those from WT mice. Thus, our study found a key role for SOD3 in regulating renal I/R injury.