Skip to navigation Skip to content
  • Woodruff
  • Business
  • Health Sciences
  • Law
  • MARBL
  • Oxford College
  • Theology
  • Schools
    • Undergraduate

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing

      Community

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing
    • Graduate

      • Business School
      • Graduate School
      • School of Law
      • School of Medicine
      • School of Nursing
      • School of Public Health
      • School of Theology
  • Libraries
    • Libraries

      • Robert W. Woodruff
      • Business
      • Chemistry
      • Health Sciences
      • Law
      • MARBL
      • Music & Media
      • Oxford College
      • Theology
    • Library Tools

      • Course Reserves
      • Databases
      • Digital Scholarship (ECDS)
      • discoverE
      • eJournals
      • Electronic Dissertations
      • EmoryFindingAids
      • EUCLID
      • ILLiad
      • OpenEmory
      • Research Guides
  • Resources
    • Resources

      • Administrative Offices
      • Emory Healthcare
      • Academic Calendars
      • Bookstore
      • Campus Maps
      • Shuttles and Parking
      • Athletics: Emory Eagles
      • Arts at Emory
      • Michael C. Carlos Museum
      • Emory News Center
      • Emory Report
    • Resources

      • Emergency Contacts
      • Information Technology (IT)
      • Outlook Web Access
      • Office 365
      • Blackboard
      • OPUS
      • PeopleSoft Financials: Compass
      • Careers
      • Human Resources
      • Emory Alumni Association
  • Browse
    • Works by Author
    • Works by Journal
    • Works by Subject
    • Works by Dept
    • Faculty by Dept
  • For Authors
    • How to Submit
    • Deposit Advice
    • Author Rights
    • Publishing Your Data
    • FAQ
    • Emory Open Access Policy
    • Open Access Fund
  • About OpenEmory
    • About OpenEmory
    • About Us
    • Citing Articles
    • Contact Us
    • Privacy Policy
    • Terms of Use
 
Contact Us

Filter Results:

Author

  • Bhutani, Srishti (1)
  • Christman, Karen L. (1)
  • Davis, Michael (1)
  • Fierro, Marcos J. (1)
  • French, Kristin M. (1)
  • Ghosh-Choudhary, Shohini (1)
  • Johnson, Todd D. (1)
  • Maxwell, Joshua (1)
  • Taylor, W (1)

Subject

  • Biology, Cell (1)
  • Engineering, Biomedical (1)

Journal

  • Stem Cells International (1)

Keyword

  • 43 (1)
  • biolog (1)
  • biomedicin (1)
  • c (1)
  • cardiolog (1)
  • cell (1)
  • ckit (1)
  • connexin (1)
  • differenti (1)
  • engin (1)
  • express (1)
  • heart (1)
  • infarct (1)
  • kit (1)
  • life (1)
  • matrix (1)
  • mous (1)
  • myocardialinfarct (1)
  • prolifer (1)
  • scienc (1)
  • stem (1)
  • stemcel (1)
  • technolog (1)
  • tissu (1)

Author department

  • BME: Admin (1)
  • Medicine: Cardiology (1)

Search Results for all work with filters:

  • 2016
  • Health Sciences, General
  • myocardi
  • cardiomyocyt
  • Peds: Children's Hrt Ctr

Work 1 of 1

Sorted by relevance

Article

Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro

by Kristin M. French; Joshua Maxwell; Srishti Bhutani; Shohini Ghosh-Choudhary; Marcos J. Fierro; Todd D. Johnson; Karen L. Christman; W Taylor; Michael Davis

2016

Subjects
  • Biology, Cell
  • Engineering, Biomedical
  • Health Sciences, General
  • File Download
  • View Abstract

Abstract:Close

Cardiac progenitor cells (CPCs) have rapidly advanced to clinical trials, yet little is known regarding their interaction with the microenvironment. Signaling cues present in the microenvironment change with development and disease. This work aims to assess the influence of two distinct signaling moieties on CPCs: cyclic biaxial strain and extracellular matrix. We evaluate four endpoints for improving CPC therapy: paracrine signaling, proliferation, connexin43 expression, and alignment. Vascular endothelial growth factor A (about 900 pg/mL) was secreted by CPCs cultured on fibronectin and collagen I. The application of mechanical strain increased vascular endothelial growth factor A secretion 2-4-fold for CPCs cultured on poly-L-lysine, laminin, or a naturally derived cardiac extracellular matrix. CPC proliferation was at least 25% higher on fibronectin than that on other matrices, especially for lower strain magnitudes. At 5% strain, connexin43 expression was highest on fibronectin. With increasing strain magnitude, connexin43 expression decreased by as much as 60% in CPCs cultured on collagen I and a naturally derived cardiac extracellular matrix. Cyclic mechanical strain induced the strongest CPC alignment when cultured on fibronectin or collagen I. This study demonstrates that culturing CPCs on fibronectin with 5% strain magnitude is optimal for their vascular endothelial growth factor A secretion, proliferation, connexin43 expression, and alignment.
Site Statistics
  • 16,941
  • Total Works
  • 3,665,050
  • Downloads
  • 1,140,961
  • Downloads This Year
  • 6,807
  • Faculty Profiles

Copyright © 2016 Emory University - All Rights Reserved
540 Asbury Circle, Atlanta, GA 30322-2870
(404) 727-6861
Privacy Policy | Terms & Conditions

v2.2.8-dev

Contact Us Recent and Popular Items
Download now