The Rhesus monkey is a useful model for examining age-related as well as other neurological and developmental effects on the brain, because of the extensive neuroanatomical homology to the human brain, the reduced occurrence of neurological diseases such as Alzheimer's disease, and the possibility of obtaining relevant behavioral data and post-mortem tissue for histological analyses. In this study, cortical thickness measurements based on a cortical surface modeling technique were applied for the first time to investigate cortical thickness patterns in the rhesus monkey brain, and were used to evaluate regional age related effects across a wide range of ages. Age related effects were observed in several cortical areas, in particular in the somato-sensory and motor cortices, where a robust negative correlation of cortical thickness with age was observed, similar to that found in humans. In contrast, results for monkeys compared with humans show significant interspecies differences in cortical thickness patterns in the frontal and the inferior temporal regions.
Prenatal alcohol exposure (PAE) is associated with various adverse effects on human brain and behavior. Recently, neuroimaging studies have begun to identify PAE effects on specific brain structures. Investigation of such specific PAE effects is important for understanding the teratogenic mechanism of PAE on human brain, which is critical for differentiating PAE from other disorders. In this structural MRI study with young adults, PAE effects on the volumes of automatically segmented cortical and sub-cortical regions of interest (ROIs) were evaluated both through a group difference approach and a parametric approach. In the group difference approach (comparing among two PAE and a control groups), a disproportionate PAE effect was found in several occipital and temporal regions. This result is inconsistent with previous studies with child samples. Moreover, a gender difference in PAE effect was shown in some cortical ROIs. These findings suggest that sampling and gender may be important factors for interpreting specific PAE effects on human brain. With the parametric approach, it was demonstrated that the higher the PAE level, the smaller the entire brain, the lower the IQ. Several cortical and sub-cortical ROIs also exhibited a negative correlation between the PAE level and ROI volume. Furthermore, our data showed that the PAE effect on the brain could not be interpreted by the PAE effect on general physical growth until the young adult age. This study provides valuable insight into specific effects of PAE on human brain, and suggests important implications for future studies in this field.
by
Tyrone D. Cannon;
Frank Sun;
Sarah Jacobson McEwen;
Xenophon Papademetris;
George He;
Theo G. M. van Erp;
Aron Jacobson;
Carrie E. Bearden;
Elaine Walker;
Xiaoping Hu;
Lei Zhou;
Larry J. Seidman;
Heidi W. Thermenos;
Barbara Cornblatt;
Doreen M. Olvet;
Diana Perkins;
Aysenil Belger;
Kristin Cadenhead;
Ming Tsuang;
Heline Mirzakhanian;
Jean Addington;
Richard Frayne;
Scott W. Woods;
Thomas H. McGlashan;
R. Todd Constable;
Maolin Qiu;
Daniel H. Mathalon;
Paul Thompson;
Arthur W. Toga
Multisite longitudinal neuroimaging designs are used to identify differential brain structural change associated with onset or progression of disease. The reliability of neuroanatomical measurements over time and across sites is a crucial aspect of power in such studies. Prior work has found that while within-site reliabilities of neuroanatomical measurements are excellent, between-site reliability is generally more modest. Factors that may increase between-site reliability include standardization of scanner platform and sequence parameters and correction for between-scanner variations in gradient nonlinearities. Factors that may improve both between- and within-site reliability include use of registration algorithms that account for individual differences in cortical patterning and shape. In this study 8 healthy volunteers were scanned twice on successive days at 8 sites participating in the North American Prodrome Longitudinal Study (NAPLS). All sites employed 3 Tesla scanners and standardized acquisition parameters. Site accounted for 2 to 30% of the total variance in neuroanatomical measurements. However, site-related variations were trivial (<1%) among sites using the same scanner model and 12-channel coil or when correcting for between-scanner differences in gradient nonlinearity and scaling. Adjusting for individual differences in sulcal-gyral geometries yielded measurements with greater reliabilities than those obtained using an automated approach. Neuroimaging can be performed across multiple sites at the same level of reliability as at a single site, achieving within- and between-site reliabilities of 0.95 or greater for gray matter density in the majority of voxels in the prefrontal and temporal cortical surfaces as well as for the volumes of most subcortical structures.