Skip to navigation Skip to content
  • Woodruff
  • Business
  • Health Sciences
  • Law
  • MARBL
  • Oxford College
  • Theology
  • Schools
    • Undergraduate

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing

      Community

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing
    • Graduate

      • Business School
      • Graduate School
      • School of Law
      • School of Medicine
      • School of Nursing
      • School of Public Health
      • School of Theology
  • Libraries
    • Libraries

      • Robert W. Woodruff
      • Business
      • Chemistry
      • Health Sciences
      • Law
      • MARBL
      • Music & Media
      • Oxford College
      • Theology
    • Library Tools

      • Course Reserves
      • Databases
      • Digital Scholarship (ECDS)
      • discoverE
      • eJournals
      • Electronic Dissertations
      • EmoryFindingAids
      • EUCLID
      • ILLiad
      • OpenEmory
      • Research Guides
  • Resources
    • Resources

      • Administrative Offices
      • Emory Healthcare
      • Academic Calendars
      • Bookstore
      • Campus Maps
      • Shuttles and Parking
      • Athletics: Emory Eagles
      • Arts at Emory
      • Michael C. Carlos Museum
      • Emory News Center
      • Emory Report
    • Resources

      • Emergency Contacts
      • Information Technology (IT)
      • Outlook Web Access
      • Office 365
      • Blackboard
      • OPUS
      • PeopleSoft Financials: Compass
      • Careers
      • Human Resources
      • Emory Alumni Association
  • Browse
    • Works by Author
    • Works by Journal
    • Works by Subject
    • Works by Dept
    • Faculty by Dept
  • For Authors
    • How to Submit
    • Deposit Advice
    • Author Rights
    • Publishing Your Data
    • FAQ
    • Emory Open Access Policy
    • Open Access Fund
  • About OpenEmory
    • About OpenEmory
    • About Us
    • Citing Articles
    • Contact Us
    • Privacy Policy
    • Terms of Use
 
Contact Us

Filter Results:

Year

  • 2012 (1)
  • 2016 (1)

Author

  • Carter, Conner B. (1)
  • Frohlich, Otto (1)
  • Qian, Xiaoqian (1)
  • Sands, Jeff (1)
  • Song, Xiang (1)
  • Su, Hua (1)
  • Xu, Gang (1)

Subject

  • Biology, Physiology (2)

Journal

  • American Journal of Physiology - Cell Physiology (1)
  • Pflügers Archiv European Journal of Physiology (1)

Keyword

  • transport (2)
  • urea (2)
  • accumul (1)
  • b (1)
  • biomedicin (1)
  • c (1)
  • collect (1)
  • concentr (1)
  • cytoskelet (1)
  • defect (1)
  • duct (1)
  • glycosyl (1)
  • kinas (1)
  • lack (1)
  • latrunculin (1)
  • life (1)
  • mice (1)
  • phosphoryl (1)
  • physiolog (1)
  • scienc (1)
  • sialyl (1)
  • sialyltransferas (1)
  • technolog (1)
  • ut (1)
  • utb (1)

Author department

  • Physiology: Admin (2)
  • Medicine: Nephrology (1)

Search Results for all work with filters:

  • Chen, Guangping
  • Biology, Cell
  • membran
  • protein

Work 1-2 of 2

Sorted by relevance

Article

Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation

by Xiaoqian Qian; Jeff Sands; Xiang Song; Guangping Chen

2016

Subjects
  • Biology, Physiology
  • Biology, Cell
  • File Download
  • View Abstract

Abstract:Close

Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.

Article

Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking

by Gang Xu; Hua Su; Conner B. Carter; Otto Frohlich; Guangping Chen

2012

Subjects
  • Biology, Physiology
  • Biology, Cell
  • View on PubMed Central
  • View Abstract

Abstract:Close

The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that actin binding to UT-A1's carboxyl terminus was abolished when serine 918 was mutated to alanine. In polarized UT-A1-MDCK cells, cortical filamentous (F) actin colocalizes with UT-A1 at the apical membrane and the subapical cytoplasm. In the cell surface, both actin and UT-A1 are distributed in the lipid raft microdomains. Disruption of the F-actin cytoskeleton by latrunculin B resulted in UT-A1 accumulation in the cell membrane as measured by biotinylation. This effect was mainly due to inhibition of UT-A1 endocytosis in both clathrin and caveolin-mediated endocytic pathways. In contrast, actin depolymerization facilitated forskolin-stimulated UT-A1 trafficking to the cell surface. Functionally, depolymerization of actin by latrunculin B significantly increased UT-A1 urea transport activity in an oocyte expression system. Our study shows that cortical F-actin not only serves as a structural protein, but directly interacts with UT-A1 and plays an important role in controlling UT-A1 cell surface expression by affecting both endocytosis and trafficking, therefore regulating UT-A1 bioactivity.
Site Statistics
  • 30,443
  • Total Works
  • 7,581,217
  • Downloads
  • 198,156
  • Downloads This Year
  • 6,806
  • Faculty Profiles

Copyright © 2016 Emory University - All Rights Reserved
540 Asbury Circle, Atlanta, GA 30322-2870
(404) 727-6861
Privacy Policy | Terms & Conditions

v2.2.8-dev

Contact Us Recent and Popular Items
Download now