Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase-activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.
Apoptosis has been proposed as a key mechanism responsible for CD4+ T cell depletion and immune dysfunction during HIV infection. We demonstrated that Q-VD-OPH, a caspase inhibitor, inhibits spontaneous and activation-induced death of T cells from SIV-infected rhesus macaques (RMs). When administered during the acute phase of infection, Q-VD-OPH was associated with (a) reduced levels of T cell death, (b) preservation of CD4+/CD8+ T cell ratio in lymphoid organs and in the gut, (c) maintenance of memory CD4+ T cells, and (d) increased specific CD4+ T cell response associated with the expression of cytotoxic molecules. Although therapy was limited to the acute phase of infection, Q-VD-OPH-treated RMs showed lower levels of both viral load and cell-associated SIV DNA as compared with control SIV-infected RMs throughout the chronic phase of infection, and prevented the development of AIDS. Overall, our data demonstrate that Q-VD-OPH injection in SIV-infected RMs may represent an adjunctive therapeutic agent to control HIV infection and delaying disease progression to AIDS.
Identified neurons and the networks they compose produce stereotypical, albeit individually unique, activity across members of a species. We propose, for a motor circuit driven by a central pattern generator (CPG), that the uniqueness derives mainly from differences in synaptic strength rather than from differences in intrinsic membrane conductances. We studied a dataset of recordings from six leech (Hirudo sp.) heartbeat control networks, containing complete spiking activity patterns from inhibitory premotor interneurons, motor output spike patterns, and synaptic strength patterns to investigate the source of uniqueness. We used a conductance-based multicompartmental motor neuron model to construct a bilateral motor circuit model, and controlled it by playing recorded input spike trains from premotor interneurons to generate output inhibitory synaptic patterns similar to experimental measurements. By generating different synaptic conductance parameter sets of this circuit model, we found that relative premotor synaptic strengths impinging onto motor neurons must be different across individuals to produce animal-specific output burst phasing. Obtaining unique outputs from each individual’s circuit model did not require different intrinsic ionic conductance parameters. Furthermore, changing intrinsic conductances failed to compensate for modified synaptic strength patterns. Thus, the pattern of synaptic strengths of motor neuron inputs is critical for the phasing of this motor circuit and can explain individual differences. When intrinsic conductances were allowed to vary, they exhibited the same conductance correlations across individuals, suggesting a motor neuron “type” required for proper network function. Our results are general and may translate to other systems and neuronal networks that control output phasing.
by
Patrick G. Gallagher;
Yelena Maksimova;
Kimberly Lezon-Geyda;
Peter E. Newburger;
Desiree Medeiros;
Robin D. Hanson;
Jennifer Rothman;
Sara Israels;
Donna A. Wall;
Robert F. Sidonio Jr;
Colin Sieff;
L. Kate Gowans;
Nupur Mittal;
Roland Rivera-Santiago;
David W. Speicher;
SusanJ. Baserga;
Vincent P. Schulz
The etiology of severe hemolytic anemia in most patients with recessive hereditary spherocytosis (rHS) and the related disorder hereditary pyropoikilocytosis (HPP) is unknown. Whole-exome sequencing of DNA from probands of 24 rHS or HPP kindreds identified numerous mutations in erythrocyte membrane α-spectrin (SPTA1). Twenty-eight mutations were novel, with null alleles frequently found in trans to missense mutations. No mutations were identified in a third of SPTA1 alleles (17/48). WGS revealed linkage disequilibrium between the common rHS-linked αBH polymorphism and a rare intron 30 variant in all 17 mutation-negative alleles. In vitro minigene studies and in vivo splicing analyses revealed the intron 30 variant changes a weak alternate branch point (BP) to a strong BP. This change leads to increased utilization of an alternate 3′ splice acceptor site, perturbing normal α-spectrin mRNA splicing and creating an elongated mRNA transcript. In vivo mRNA stability studies revealed the newly created termination codon in the elongated transcript activates nonsense-mediated decay leading to spectrin deficiency. These results demonstrate that a unique mechanism of human genetic disease contributes to the etiology of a third of rHS cases, facilitating diagnosis and treatment of severe anemia and identifying a new target for therapeutic manipulation.
by
Richard Kahn;
Elspeth Bruford;
Hiroki Inoue;
John M. Logsdon, Jr.;
Zhongzhen Nie;
Richard T. Premont;
Paul A. Randazzo;
Masanobu Satake;
Anne B. Theibert;
Maria L. Zapp;
Dan Cassel
At the FASEB summer research conference on "Arf Family GTPases", held in Il Ciocco, Italy in June, 2007, it became evident to researchers that our understanding of the family of Arf GTPase activating proteins (ArfGAPs) has grown exponentially in recent years. A common nomenclature for these genes and proteins will facilitate discovery of biological functions and possible connections to pathogenesis. Nearly 100 researchers were contacted to generate a consensus nomenclature for human ArfGAPs. This article describes the resulting consensus nomenclature and provides a brief description of each of the 10 subfamilies of 31 human genes encoding proteins containing the Arf-GAP domain.
The lung is dynamically remodeled in response to injury, which alters extracellular matrix composition, and can lead to either healthy or impaired lung regeneration. To determine how changes in extracellular matrix can influence alveolar epithelial barrier function, we examined the expression and function of tight junction proteins by rat alveolar epithelial type II cells cultured on one of three different matrix components: type I collagen or fibronectin, matrix glycoproteins which are highly expressed in injured lungs, or laminin, a basement membrane matrix component. Of note, alveolar epithelial cells cultured for 2 days on fibronectin formed high-resistance barriers and showed continuous claudin-3 and claudin-18 localization to the plasma membrane, as opposed to cells cultured on either type I collagen or laminin, which had low resistance monolayers and had areas of cell–cell contact that were claudin deficient. The barrier formed by cells cultured on fibronectin also had preferential permeability to chloride as compared with sodium. Regardless of the initial matrix composition, alveolar epithelial cells cultured for 5 days formed high-resistance barriers, which correlated with increased claudin-18 localization to the plasma membrane and an increase in zonula occludens-1. Day 5 cells on laminin had significantly higher resistance than cells on either fibronectin or type I collagen. Thus, although alveolar epithelial cells on fibronectin formed rapid barriers, it was at the expense of producing an optimized barrier.
Vast arrays of structural forms are accessible to simple amyloid peptides and environmental conditions can direct assembly into single phases. These insights are now being applied to the aggregation of the Aβ peptide of Alzheimer's disease and the identification of causative phases. We extend use of the imaging agent Pittsburgh compound B to discriminate among Aβ phases and begin to define conditions of relevance to the disease state. Also, we specifically highlight the development of methods for defining the structures of these more complex phases.
P2X purinergic receptors, activated by extracellular ATP, mediate a number of cardiac cellular effects and may be important under pathophysiological conditions. The objective of the present study was to characterize the P2X receptor-mediated ionic current and determine its role in heart failure using the calsequestrin (CSQ) model of cardiomyopathy. Membrane currents under voltage clamp were determined in myocytes from both wild-type (WT) and CSQ mice. The P2X agonist 2-methylthio-ATP (2-meSATP) induced an inward current that was greater in magnitude in CSQ than in WT ventricular cells. The novel agonist, MRS-2339, an N-methanocarba derivative of 2-chloro-AMP relatively resistant to nucleotidase, induced a current in the CSQ myocyte similar to that by 2-meSATP. When administered via a miniosmotic pump (Alzet), it significantly increased longevity compared with vehicle-injected mice (log rank test, P = 0.02). The improvement in survival was associated with decreases in the heart weight-to-body weight ratio and in cardiac myocyte cross-sectional area [MRS-2339-treated mice: 281 ± 15.4 (SE) μm2, n = 6 mice vs. vehicle-treated mice: 358 ± 27.8 μm2, n = 6 mice, P < 0.05]. MRS-2339 had no vasodilator effect in mouse aorta ring preparations, indicating that its salutary effect in heart failure is not because of any vascular unloading. The cardiac P2X current is upregulated in the CSQ heart failure myocytes. Chronic administration of a nucleotidase-resistant agonist confers a beneficial effect in the CSQ model of heart failure, apparently via an activation of the cardiac P2X receptor. Cardiac P2X receptors represent a novel and potentially important therapeutic target for the treatment of heart failure.
The molecular basis for retention of integral membrane proteins in the endoplasmic reticulum (ER) is not well understood. We recently discovered a novel ER molecular chaperone termed Cosmc, which is essential for folding and normal activity of the Golgi enzyme T-synthase. Cosmc, a type II single-pass transmembrane protein, lacks any known ER retrieval/retention motifs. To explore specific ER localization determinants in Cosmc we generated a series of Cosmc mutants along with chimeras of Cosmc with a non-ER resident type II protein, the human transferrin receptor. Here we show that the 18 amino acid transmembrane domain (TMD) of Cosmc is essential for ER localization and confers ER retention to select chimeras. Moreover, mutations of a single Cys residue within the TMD of Cosmc prevent formation of disulfide-bonded dimers of Cosmc and eliminate ER retention. These studies reveal that Cosmc has a unique ER-retention motif within its TMD and provide new insights into the molecular mechanisms by which TMDs of resident ER proteins contribute to ER localization.