EP2 receptor has emerged as an important biological target for therapeutic intervention. In particular, it has been shown to exacerbate disease progression of a variety of CNS and peripheral diseases. Deletion of the EP2 receptor in mouse models recapitulates several features of the COX-2 inhibition, thus presenting a new avenue for anti-inflammatory therapy which could bypass some of the adverse side effects observed by the COX-2 inhibition therapy. We have recently reported a cinnamic amide class of EP2 antagonists with high potency, but these compounds exhibited a moderate selectivity against prostanoid receptor DP1. Moreover they possess acrylamide moiety in the structure, which may result in liver toxicity over longer period of use in a chronic disease model. Thus, we now developed a second generation compounds that devoid of the acrylamide functionality and possess high potency and improved (>1000-fold) selectivity to EP2 over other prostanoid receptors.
The EP2 receptor has emerged as a therapeutic target with exacerbating role in disease pathology for a variety of peripheral and central nervous system disorders. We and others have recently demonstrated beneficial effects of EP2 antagonists in preclinical models of neuroinflammation and peripheral inflammation. However, it was earlier reported that mice with global EP2 knockout (KO) display adverse phenotypes on fertility and blood pressure. Other studies indicated that EP2 activation with an agonist has a beneficial effect of healing fractured bone in animal models. These results impeded the development of EP2 antagonists, and EP2 antagonism as therapeutic strategy. To determine whether treatment with EP2 antagonist mimics the adverse phenotypes of the EP2 global KO mouse, we tested two EP2 antagonists TG11–77. HCl and TG6–10–1 in mice and rats while they are on normal or high-salt diet, and by two different administration protocols (acute and chronic). There were no adverse effects of the antagonists on systolic and diastolic blood pressure, heart rate, respiratory function in mice and rats regardless of rodents being on a regular or high salt diet. Furthermore, chronic exposure to TG11–77. HCl produced no adverse effects on blood cell counts, bone-volume and bone-mineral density in mice. Our findings argue against adverse effects on cardiovascular and respiratory systems, blood counts and bone structure in healthy rodents from the use of small molecule reversible antagonists for EP2, in contrast to the genetic ablation model. This study paves the way for advancing therapeutic applications of EP2 antagonists against diseases involving EP2 dysfunction.
Atherosclerosis is a multifactorial disease that preferentially occurs in arterial regions exposed to d-flow can be used to indicate disturbed flow or disturbed blood flow. The mechanisms by which d-flow induces atherosclerosis involve changes in the transcriptome, methylome, proteome, and metabolome of multiple vascular cells, especially endothelial cells. Initially, we begin with the pathogenesis of atherosclerosis and the changes that occur at multiple levels owing to d-flow, especially in the endothelium. Also, there are a variety of strategies used for the global profiling of the genome, transcriptome, miRNA-ome, DNA methylome, and metabolome that are important to define the biological and pathophysiological mechanisms of endothelial dysfunction and atherosclerosis. Finally, systems biology can be used to integrate these ‘omics’ datasets, especially those that derive data based on a single animal model, in order to better understand the pathophysiology of atherosclerosis development in a holistic manner and how this integrative approach could be used to identify novel molecular diagnostics and therapeutic targets to prevent or treat atherosclerosis. WIREs Syst Biol Med 2016, 8:378–401. doi: 10.1002/wsbm.1344. For further resources related to this article, please visit the WIREs website.
Background: Urea, the end product of protein metabolism, has been considered to have negligible toxicity for a long time. Our previous study showed a depression phenotype in urea transporter (UT) B knockout mice, which suggests that abnormal urea metabolism may cause depression. The purpose of this study was to determine if urea accumulation in brain is a key factor causing depression using clinical data and animal models.
Methods: A meta-analysis was used to identify the relationship between depression and chronic diseases. Functional Magnetic Resonance Imaging (fMRI) brain scans and common biochemical indexes were compared between the patients and healthy controls. We used behavioural tests, electrophysiology, and molecular profiling techniques to investigate the functional role and molecular basis in mouse models.
Findings: After performing a meta-analysis, we targeted the relevance between chronic kidney disease (CKD) and depression. In a CKD mouse model and a patient cohort, depression was induced by impairing the medial prefrontal cortex. The enlarged cohort suggested that urea was responsible for depression. In mice, urea was sufficient to induce depression, interrupt long-term potentiation (LTP) and cause loss of synapses in several models. The mTORC1-S6K pathway inhibition was necessary for the effect of urea. Lastly, we identified that the hydrolysate of urea, cyanate, was also involved in this pathophysiology.
Interpretation: These data indicate that urea accumulation in brain is an independent factor causing depression, bypassing the psychosocial stress. Urea or cyanate carbamylates mTOR to inhibit the mTORC1-S6K dependent dendritic protein synthesis, inducing impairment of synaptic plasticity in mPFC and depression-like behaviour. CKD patients may be able to attenuate depression only by strict management of blood urea.
Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol. These domains participate in membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current state of the desmosome field and put forward new hypotheses for the role of lipid rafts in desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that differential lipid raft affinity of intercellular junction proteins is a central driving force in the organization of the epithelial apical junctional complex.
by
Michihiro Kobayashi;
Yang Lin;
Akansha Mishra;
Chris Shelly;
Rui Gao;
Colton W Reeh;
Paul Zhiping Wang;
Rongwen Xi;
Yunlong Liu;
Pamela Wenzel;
Eliver Ghosn;
Yan Liu;
Momoko Yoshimoto
The self-renewal ability is a unique property of fetal-derived innate-like B-1a lymphocytes, which survive and function without being replenished by bone marrow (BM) progenitors. However, the mechanism by which IgM-secreting mature B-1a lymphocytes self-renew is poorly understood. In this study, we showed that Bmi1 was critically involved in this process. Although Bmi1 is considered essential for lymphopoiesis, the number of mature conventional B cells was not altered when Bmi1 was deleted in the B cell lineage. In contrast, the number of peritoneal B-1a cells was significantly reduced. Peritoneal cell transfer assays revealed diminished self-renewal ability of Bmi1-deleted B-1a cells, which was restored by additional deletion of Ink4-Arf, the well-known target of Bmi1. Fetal liver cells with B cell-specific Bmi1 deletion failed to repopulate peritoneal B-1a cells, but not other B- 2 lymphocytes after transplantation assays, suggesting that Bmi1 may be involved in the developmental process of B-1 progenitors to mature B-1a cells. Although Bmi1 deletion has also been shown to alter the microenvironment for hematopoietic stem cells, fatassociated lymphoid clusters, the reported niche for B-1a cells, were not impaired in Bmi1-/- mice. RNA expression profiling suggested lysine demethylase 5B (Kdm5b) as another possible target of Bmi1, which was elevated in Bmi1-/- B-1a cells in a stress setting and might repress B-1a cell proliferation. Our work has indicated that Bmi1 plays pivotal roles in self-renewal and maintenance of fetal-derived B-1a cells.
Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In the present study, a novel UT inhibitor with a diarylamide scaffold was discovered by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate, N-[4-(acetylamino)phenyl]-5-nitrofuran-2-carboxamide (1H), with excellent in vitro UT inhibitory activity at the submicromolar level. The half maximal inhibitory concentrations of 1H against UT-B in mouse, rat, and human erythrocyte were 1.60, 0.64, and 0.13 μmol/L, respectively. Further investigation suggested that 8 μmol/L 1H more powerfully inhibited UT-A1 at a rate of 86.8% than UT-B at a rate of 73.9% in MDCK cell models. Most interestingly, we found for the first time that oral administration of 1H at a dose of 100 mg/kg showed superior diuretic effect in vivo without causing electrolyte imbalance in rats. Additionally, 1H did not exhibit apparent toxicity in vivo and in vitro, and possessed favorable pharmacokinetic characteristics. 1H shows promise as a novel diuretic to treat hyponatremia accompanied with volume expansion and may cause few side effects.
by
Laura M Vecchio;
Patricia Sullivan;
Amy R Dunn;
Marie Kristek Bermejo;
Rong Fu;
Shababa T Masoud;
Emil Gregersen;
Nikhil M Urs;
Reza Nazari;
Poul H Jensen;
Amy Ramsey;
David S Goldstein;
Gary Miller;
Ali Salahpour
In Parkinson's disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of H2O2 and reduced glutathione levels. In addition, TH-HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4-dihydroxyphenylacetaldehyde and 5-S-cysteinyl-dopamine and were more susceptible than wild-type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity. (Figure presented.).
Purpose: Osteopontin is a cytokine found in many tissues and plays a role in tissue injury and repair. This study had two goals: to characterize osteopontin expression after status epilepticus (SE), and to test the hypotheses that osteopontin affects the susceptibility to seizures or alters cell death and inflammation after SE.
Methods: Pilocarpine was used to induce SE in OPN-/-and OPN+/+ mice to compare seizure susceptibility, neuropathological markers including real time PCR for inflammatory genes, and osteo- pontin immunohistochemistry. The effect of added osteopontin on excitotoxicity by N-methyl- D-aspartate in neuronal cultures of ONP -/- mice was determined.
Results: Neurons undergoing degeneration showed osteopontin immunoreactivity 2-3 days after SE. After 10 to 31 days degenerating axons in the thalamus were osteopontin-positive. The susceptibility to seizures of OPN-/- and OPN+/+ mice in the pilocarpine, fluorothyl, and maximal elec- troshock models was similar. There were no significant differences in the extent ofneuronal damage after pilocarpine-induced SE, the expression of several neuropathological markers or the RNA levels of selected inflammatory genes. Recombi- nant and natural bovine osteopontin did not affect the extent of NMDA-induced cell death in OPN -/- mouse neuronal cultures.
Conclusion: We demonstrated that osteopontin is up-regulated in response to SE in distinct temporal sequences in the hippocampus, specifically in degenerating neurons and axons. However, osteopontin did not appear to regulate neurodegeneration or inflammation within the first 3 days after SE.
Urea transporters are a family of urea-selective channel proteins expressed in multiple tissues that play an important role in the urine-concentrating mechanism of the mammalian kidney. Previous studies have shown that knockout of urea transporter (UT)-B, UT-A1/A3, or all UTs leads to urea-selective diuresis, indicating that urea transporters have important roles in urine concentration. Here, we sought to determine the role of UT-A1 in the urine-concentrating mechanism in a newly developed UTA1–knockout mouse model. Phenotypically, daily urine output in UT-A1–knockout mice was nearly 3-fold that of WT mice and 82% of all-UT–knockout mice, and the UT-A1–knockout mice had significantly lower urine osmolality than WT mice. After 24-h water restriction, acute urea loading, or high-protein (40%) intake, UT-A1–knockout mice were unable to increase urine-concentrating ability. Compared with all-UT–knockout mice, the UT-A1–knockout mice exhibited similarly elevated daily urine output and decreased urine osmolality, indicating impaired urea-selective urine concentration. Our experimental findings reveal that UT-A1 has a predominant role in urea-dependent urine-concentrating mechanisms, suggesting that UTA1 represents a promising diuretic target.