OBJECTIVE To explore the prevalence and drivers of hospital-level variability in antibiotic utilization among hematopoietic cell transplant (HCT) recipients to inform antimicrobial stewardship initiatives.DESIGN Retrospective cohort study using data merged from the Pediatric Health Information System and the Center for International Blood and Marrow Transplant Research.SETTING The study included 27 transplant centers in freestanding children's hospitals.METHODS The primary outcome was days of broad-spectrum antibiotic use in the interval from day of HCT through neutrophil engraftment. Hospital antibiotic utilization rates were reported as days of therapy (DOTs) per 1,000 neutropenic days. Negative binomial regression was used to estimate hospital utilization rates, adjusting for patient covariates including demographics, transplant characteristics, and severity of illness. To better quantify the magnitude of hospital variation and to explore hospital-level drivers in addition to patient-level drivers of variation, mixed-effects negative binomial models were also constructed.RESULTS Adjusted hospital rates of antipseudomonal antibiotic use varied from 436 to 1121 DOTs per 1,000 neutropenic days, and rates of broad-spectrum, gram-positive antibiotic use varied from 153 to 728 DOTs per 1,000 neutropenic days. We detected variability by hospital in choice of antipseudomonal agent (ie, cephalosporins, penicillins, and carbapenems), but gram-positive coverage was primarily driven by vancomycin use. Considerable center-level variability remained even after controlling for additional hospital-level factors. Antibiotic use was not strongly associated with days of significant illness or mortality.CONCLUSION Among a homogenous population of children undergoing HCT for acute leukemia, both the quantity and spectrum of antibiotic exposure in the immediate posttransplant period varied widely. Antimicrobial stewardship initiatives can apply these data to optimize the use of antibiotics in transplant patients.
Objective. We sought to determine whether the bacterial burden in the nares, as determined by the cycle threshold (CT) value from real-time MRSA PCR, is predictive of environmental contamination with MRSA Methods. Patients identified as MRSA nasal carriers per hospital protocol were enrolled within 72 hours of room admission. Patients were excluded if (1) nasal mupirocin or chlorhexidine body wash was used within the past month or (2) an active MRSA infection was suspected. Four environmental sites, 6 body sites and a wound, if present, were cultured with premoistened swabs. All nasal swabs were submitted for both a quantitative culture and real-time PCR (Roche Lightcycler, Indianapolis, IN) Results. At study enrollment, 82 patients had a positive MRSA-PCR. A negative correlation of moderate strength was observed between the CT value and the number of MRSA colonies in the nares (r= −0.61; P<0.01). Current antibiotic use was associated with lower levels of MRSA nasal colonization (CT value, 30.2 vs 27.7; P < 0.01). Patients with concomitant environmental contamination had a higher median log MRSA nares count (3.9 vs 2.5, P = 0.01) and lower CT values (28.0 vs 30.2; P < 0.01). However, a ROC curve was unable to identify a threshold MRSA nares count that reliably excluded environmental contamination Conclusions. Patients with a higher burden of MRSA in their nares, based on the CT value, were more likely to contaminate their environment with MRSA. However, contamination of the environment cannot be predicted solely by the degree of MRSA nasal colonization.