Postmenopausal women often suffer from vaginal symptoms associated with atrophic vaginitis. Additionally, gynecologic cancer survivors may live for decades with additional, clinically significant, persistent vaginal toxicities caused by cancer therapies, including pain, dyspareunia, and sexual dysfunction. The vaginal microbiome (VM) has been previously linked with vaginal symptoms related to menopause (i.e. dryness). Our previous work showed that gynecologic cancer patients exhibit distinct VM profiles from healthy women, with low abundance of lactobacilli and prevalence of multiple opportunistic pathogenic bacteria. Here we explore the association between the dynamics and structure of the vaginal microbiome with the manifestation and persistence of vaginal symptoms, during one year after completion of cancer therapies, while controlling for clinical and sociodemographic factors. We compared cross-sectionally the vaginal microbiome in 134 women, 64 gynecologic patients treated with radiotherapy and 68 healthy controls, and we longitudinally followed a subset of 52 women quarterly (4 times in a year: pre-radiation therapy, 2, 6 and 12 months post-therapy). Differences among the VM profiles of cancer and healthy women were more pronounced with the progression of time. Cancer patients had higher diversity VMs and a variety of vaginal community types (CTs) that are not dominated by Lactobacilli, with extensive VM variation between individuals. Additionally, cancer patients exhibit highly unstable VMs (based on Bray-Curtis distances) compared to healthy controls. Vaginal symptoms prevalent in cancer patients included vaginal pain (40%), hemorrhage (35%), vaginismus (28%) and inflammation (20%), while symptoms such as dryness (45%), lack of lubrication (33%) and dyspareunia (32%) were equally or more prominent in healthy women at baseline. However, 24% of cancer patients experienced persistent symptoms at all time points, as opposed to 12% of healthy women. Symptom persistence was strongly inversely correlated with VM stability; for example, patients with persistent dryness or abnormally high pH have the most unstable microbiomes. Associations were identified between vaginal symptoms and individual bacterial taxa, including: Prevotella with vaginal dryness, Delftia with pain following vaginal intercourse, and Gemillaceaea with low levels of lubrication during intercourse. Taken together our results indicate that gynecologic cancer therapy is associated with reduced vaginal microbiome stability and vaginal symptom persistence.
This pilot study examined whether a combined aerobic resistance exercise program reduced fatigue and the potential inflammatory and epigenetic mechanisms in patients with head and neck cancer (HNC) receiving intensity-modulated radiotherapy. The exercise group (N = 12) received a 3-month supervised aerobic resistance exercise intervention that was initiated before a 6-week radiotherapy regimen; the control group (N = 14) received standard care. Fatigue was measured using Multidimensional Fatigue Inventory-20; physical function measures included a 6-minute walk distance (6MWD), chair stands, bicep curls, and hand grip strength. Inflammatory markers and DNA methylation data were acquired using standardized protocol. Patients were mostly white (93%) and male (81%) with a mean age of 57 years. At the end of the intervention, the exercise group had a marginal decrease in fatigue compared with the control (−5.0 vs. 4.9; P = 0.10). The exercise group had a significantly greater improvement in 6MWD (29.8 vs. −55.5 m; P = 0.04), and a marginally smaller decline in hand grip (−0.3 vs. −5.8 lbs; P = 0.05) at the end of the intervention than the control. No significant difference in inflammatory markers was observed between groups. Lower plasma interleukin (IL) 6, IL1 receptor antagonist, tumor necrosis factor α (TNFα), soluble TNF receptor II and C-reactive protein were significantly associated with increased 6MWD, chair stand, and bicep curl at the end of the intervention (p < 0.05). Among the 1152 differentially methylated sites (DMS) after intervention (p < 0.001), 163 DMS were located in gene promoter regions. Enrichment analysis suggested that the top 10 upstream regulators were associated with tumor (HNF4A, RPP38, HOXA9, SAHM1, CDK7, NDN, RPS15) and inflammation (IRF7, CRKL, ONECUT1). The top 5 diseases or functions annotations of the 62 hypermethylated DMS indicated anti-tumor and anti-inflammatory effects that might be linked to exercise. These findings suggest that exercise may improve physical performance and reduce fatigue, which could be further linked to decreased inflammation, during active radiotherapy for HNC patients. Larger studies are warranted.