by
John J. Bowling;
Hari K. Pennaka;
Kelly Ivey;
Subagus Wahyuono;
Michelle Kelly;
Raymond F Schinazi;
Frederick A. Valeriote;
David E. Graves;
Mark T. Hamann
Aaptamine has potent cytotoxicity that may be explained by its ability to intercalate DNA. Aaptamine was evaluated for its ability to bind to DNA to validate DNA binding as the primary mechanism of cytotoxicity. Based on UV-vis absorbance titration data, the Kobs for aaptamine was 4.0 (±0.2) × 103 which was essentially equivalent to the known DNA intercalator N-[2-(diethylamino)ethyl]-9-aminoacridine-4-carboxamide. Semi-synthetic core modifications were performed to improve the general structural diversity of known aaptamine analogs and vary its absorption characteristics. Overall, 26 aaptamine derivatives were synthesized which consisted of a simple homologous range of mono and di-N-alkylations as well as some 9-O-sulfonylation and bis-O-isoaaptamine dimer products. Each product was evaluated for activity in a variety of whole cell and viral assays including a unique solid tumor disk diffusion assay. Details of aaptamine's DNA-binding activity and its derivatives' whole cell and viral assay results are discussed.
by
Silvana Opp;
Thomas Fricke;
Caitlin Shepard;
Dmytro Kovalskyy;
Akash Bhattacharya;
Frank Herkules;
Dmitri N. Ivanov;
Baek Kim;
Jose Valle-Casuso;
Felipe Diaz-Griffero
The small-molecule 6-(tert-butyl)-4-phenyl-4-(trifluoromethyl)-1H,3H-1,3,5-triazin-2-one (3G11) inhibits HIV-1 replication in the human T cell line MT-2. Here, we showed that 3G11 specifically and potently blocks HIV-1 infection. By contrast, 3G11 did not block other retroviruses such as HIV-2, simian immunodeficiency virus (SIV mac ), bovine immunodeficiency virus, feline immunodeficiency virus, equine infectious anemia virus, N-tropic murine leukemia virus, B-tropic murine leukemia virus, and Moloney murine leukemia virus. Analysis of DNA metabolism by real-time PCR revealed that 3G11 blocks the formation of HIV-1 late reverse transcripts during infection prior to the first-strand transfer step. In agreement, an in vitro assay revealed that 3G11 blocks the enzymatic activity of HIV-1 reverse transcriptase as strong as nevirapine. Docking of 3G11 to the HIV-1 reverse transcriptase enzyme suggested a direct interaction between residue L100 and 3G11. In agreement, an HIV-1 virus bearing the reverse transcriptase change L100I renders HIV-1 resistant to 3G11, which suggested that the reverse transcriptase enzyme is the viral determinant for HIV-1 sensitivity to 3G11. Although NMR experiments revealed that 3G11 binds to the HIV-1 capsid, functional experiments suggested that capsid is not the viral determinant for sensitivity to 3G11. Overall, we described a novel non-nucleoside reverse transcription inhibitor that blocks HIV-1 infection.