Ischemic stroke remains a serious threat to human life. There are limited effective therapies for the treatment of stroke. We have previously demonstrated that angiogenesis and neurogenesis in the brain play an important role in functional recovery following ischemic stroke. Recent studies indicate that increased arteriogenesis and collateral circulation are determining factors for restoring reperfusion and outcomes of stroke patients. Danshensu, the Salvia miltiorrhiza root extract, is used in treatments of various human ischemic events in traditional Chinese medicine. Its therapeutic mechanism, however, is not well clarified. Due to its proposed effect on angiogenesis and arteriogenesis, we hypothesized that danshensu could benefit stroke recovery through stimulating neurogenesis and collaterogenesis in the post-ischemia brain. Focal ischemic stroke targeting the right sensorimotor cortex was induced in wild-type C57BL6 mice and transgenic mice expressing green fluorescent protein (GFP) to label smooth muscle cells of brain arteries. Sodium danshensu (SDS, 700 mg/kg) was administered intraperitoneally (i.p.) 10 min after stroke and once daily until animals were sacrificed. To label proliferating cells, 5-bromo-2′-deoxyuridine (BrdU; 50 mg/kg, i.p.) was administered, starting on day 3 after ischemia and continued once daily until sacrifice. At 14 days after stroke, SDS significantly increased the expression of vascular endothelial growth factor (VEGF), stromal-derived factor-1 (SDF-1), brain-derived neurotrophic factor (BDNF), and endothelial nitric oxide synthase (eNOS) in the peri-infarct region. SDS-treated animals showed increased number of doublecortin (DCX)-positive cells. Greater numbers of proliferating endothelial cells and smooth muscle cells were detected in SDS-treated mice 21 days after stroke in comparison with vehicle controls. The number of newly formed neurons labeled by NeuN and BrdU antibodies increased in SDS-treated mice 28 days after stroke. SDS significantly increased the newly formed arteries and the diameter of collateral arteries, leading to enhanced local cerebral blood flow recovery after stroke. These results suggest that systemic sodium danshensu treatment shows significant regenerative effects in the post-ischemic brain, which may benefit long-term functional recovery from ischemic stroke.
The novel zinc finger protein 121 (ZNF121) has been demonstrated to physically and functionally associate with the MYC oncoprotein to regulate cell proliferation and likely breast cancer development. To further understand how ZNF121 functions in cell proliferation and carcinogenesis, we identified and characterized the interaction of ZNF121 with zinc finger and BRCA1-interacting protein with a KRAB domain 1 (ZBRK1), a breast and ovarian cancer susceptibility protein 1 (BRCA1)-interacting protein, using the yeast two-hybrid assay and other approaches. We also found that ZNF121 bound to BRCA1. Functionally, ZFN121 suppressed the expression of ANG1 and HMGA2, two common downstream targets of ZBRK1 and BRCA1. Interestingly, ZNF121 also regulated the expression of BRCA1 and ZBRK1. These findings suggest that ZNF121 is likely a member of the BRCA1/CtIP/ZBRK1 repressor complex that plays a role in breast cancer.