Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fibroblast growth factor-inducible 14 (Fn14) are expressed in neurons. Here we demonstrate that TWEAK induces a dose-dependent increase in neuronal death and that this effect is independent of TNF-α and mediated by NF-κB pathway activation. Incubation with TWEAK induces apoptotic cell death in wild-type (Wt) but not in Fn14 deficient (Fn14−/−) neurons. Intracerebral injection of TWEAK induces accumulation of poly(ADP-ribose) polymers (PAR) in Wt but not in Fn14−/− mice. Exposure to oxygen-glucose deprivation (OGD) conditions increases TWEAK and Fn14 mRNA expression in Wt neurons, and decreases cell survival in Wt but not in Fn14−/− or TWEAK deficient (TWEAK−/−) neurons. Experimental middle cerebral artery occlusion (MCAO) increases the expression of TWEAK and Fn14 mRNA and active caspase-3, and the cleavage of poly(ADP-ribose)polymerase-1 with accumulation of PAR in the ischemic area in Wt but not Fn14−/− mice. Together, these results suggest a model where in response to hypoxia/ischemia the interaction between TWEAK and Fn14 in neurons induces PARP-1 activation with accumulation of PAR polymers and cell death via NF-κB pathway activation. This is a novel pathway for hypoxia/ischemia-induced TWEAK-mediated cell death and a potential therapeutic target for ischemic stroke.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are expressed in endothelial cells and perivascular astrocytes. Here, we show that TWEAK induces a dose-dependent increase in the expression of the chemokine monocyte chemoattractant protein-1 (MCP-1) in astrocytes, and that this effect is mediated by its interaction with Fn14 via nuclear factor-κB pathway activation. Exposure to oxygen-glucose deprivation (OGD) conditions increases TWEAK and Fn14 mRNA expression in wild-type (Wt) astrocytic cultures. Likewise, incubation under OGD conditions induces the expression of MCP-1 in Wt astrocytes but not in astrocytes deficient on either TWEAK (TWEAK−/−) or Fn14 (Fn14−/−). We also found that TWEAK induces the passage of neutrophils to the abluminal side of an in vitro model of the blood–brain barrier. Our earlier studies indicate that cerebral ischemia increases the expression of TWEAK and Fn14 in the endothelial cell-basement membrane-astrocyte interface. Here, we report that middle cerebral artery occlusion increases the expression of MCP-1 and the recruitment of neutrophils into the ischemic tissue in Wt but not in TWEAK−/− or Fn14−/− mice. These novel results indicate that during cerebral ischemia, the interaction between TWEAK and Fn14 leads to the recruitment of leukocytes into the ischemic tissue.