Imaging studies have described hemodynamic activity during fear conditioning protocols with stimulus trains in which a visual conditioned stimulus (CS+) is paired with an aversive unconditioned stimulus (US, painful laser pulse) while another visual stimulus is unpaired (CS−). We now test the hypothesis that CS Event Related Spectral Perturbations (ERSPs) are related to ratings of CS Expectancy (likelihood of pairing with the US), Valence (unpleasantness) and Salience (ability to capture attention). ERSP windows in EEG were defined by both time after the CS and frequency, and showed increased oscillatory power (Event Related Synchronization, ERS) in the Delta/Theta Windows (0–8 Hz) and the Gamma Window (30–55 Hz). Decreased oscillatory power (Event Related Desynchronization – ERD) was found in Alpha (8–14 Hz) and Beta Windows (14–30 Hz). The Delta/Theta ERS showed a differential effect of CS+ versus CS− at Prefrontal, Frontal and Midline Channels, while Alpha and Beta ERD were greater at Parietal and Occipital Channels early in the stimulus train. The Gamma ERS Window increased from habituation to acquisition over a broad area from frontal and occipital electrodes. The CS Valence and Salience were greater for CS+ than CS−, and were correlated with each other and with the ERD at overlapping channels, particularly in the Alpha Window. Expectancy and CS Skin Conductance Response were greater for CS+ than CS− and were correlated with ERSP at fewer channels than Valence or Salience. These results suggest that Alpha ERSP activity during fear conditioning reflects Valence and Salience of the CSs more than conditioning per se.
by
Jacklynn M. Fitzgerald;
Annmarie MacNamara;
Julia A. DiGangi;
Amy E. Kennedy;
Christine A. Rabinak;
Ryan Patwell;
Justin E. Greenstein;
Eric Proescher;
Sheila Rauch;
Greg Hajcak;
K. Luan Phan
Posttraumatic stress disorder (PTSD) – a debilitating disorder characterized by severe deficits in emotion regulation – is prevalent among U.S. military veterans. Research into the pathophysiology of PTSD has focused primarily on emotional reactivity, showing evidence of heightened neural response during negative affect provocation. By comparison, studies of brain functioning during the voluntary regulation of negative affect are limited. In the current study, combat-exposed U.S. military veterans with (n=25) and without (n=25) PTSD performed an emotion regulation task during electroencephalographic (EEG) recording. The late positive potential (LPP) was used as a measure of sustained attention toward, and processing of, negative and neutral pictures, and was scored prior to and after instructions to either maintain or down-regulate emotional response using the strategy of cognitive reappraisal. Results showed that groups did not differ in picture-elicited LPP amplitude either prior to or during cognitive reappraisal; reappraisal reduced the LPP in both groups over time. Time-dependent increases in LPP amplitude as a function of emotional reactivity maintenance were evident in the non-PTSD group only. This latter finding may signal PTSD-related deficits in sustained engagement with emotion-processing over the course of several seconds.