by
Abu M Naser;
Mahbubur Rahman;
Leanne Unicomb;
Sarker Masud Parvez;
Shariful Islam;
Solaiman Doza;
Golam Kibria Khan;
Kazi Matin Ahmed;
Shuchi Anand;
Stephen P Luby;
Mohammad Shamsudduha;
Matthew Gribble;
Kabayam Venkat Narayan;
Thomas Clasen
This study explores the associations of drinking rainwater with mineral intake and cardiometabolic health in the Bangladeshi population. We pooled 10030 person-visit data on drinking water sources, blood pressure (BP) and 24-h urine minerals. Fasting blood glucose (FBG) was measured in 3724 person-visits, and lipids in 1118 person-visits. We measured concentrations of sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) in 253 rainwater, 935 groundwater and 130 pond water samples. We used multilevel linear or gamma regression models with participant-, household- and community-level random intercepts to estimate the associations of rainwater consumption with urine minerals and cardiometabolic biomarkers. Rainwater samples had the lowest concentrations of Na, K, Ca and Mg. Rainwater drinkers had lower urine minerals than coastal groundwater drinkers: −13.42 (95% CI: −18.27, −8.57) mmol Na/24 h, −2.00 (95% CI: −3.16, −0.85) mmol K/24 h and −0.57 (95% CI: −1.02, −0.16) mmol Mg/24 h. The ratio of median 24-hour urinary Ca for rainwater versus coastal groundwater drinkers was 0.72 (95% CI: 0.64, 0.80). Rainwater drinkers had 2.15 (95% CI: 1.02, 3.27) mm Hg higher systolic BP, 1.82 (95% CI: 1.19, 2.54) mm Hg higher diastolic BP, 0.59 (95% CI: 0.17, 1.01) mmol/L higher FBG and −2.02 (95% CI: −5.85, 0.81) mg/dl change in high-density lipoprotein cholesterol compared with the coastal groundwater drinkers. Drinking rainwater was associated with worse cardiometabolic health measures, which may be due to the lower intake of salubrious Ca, Mg and K.
Flow structures, hemodynamics and the hydrodynamic surgical pathway resistances of the final stage functional single ventricle reconstruction, namely the total cavopulmonary connection (TCPC) anatomy, have been investigated extensively. However, the second stage surgical anatomy (i.e., bi-directional Glenn or hemi-Fontan template) has received little attention. We thus initiated a multi-faceted study, involving magnetic resonance imaging (MRI), phase contrast MRI, computational and experimental fluid dynamics methodologies, focused on the second stage of the procedure. Twenty three-dimensional computer and rapid prototype models of 2nd stage TCPC anatomies were created, including idealized parametric geometries (n = 6), patient-specific anatomies (n = 7), and their virtual surgery variant (n = 7). Results in patient-specific and idealized models showed that the Glenn connection template is hemodynamically more efficient with (83% p = 0.08 in patient-specific models and 66% in idealized models) lower power losses compared to hemi-Fontan template, respectively, due to its direct end-to-side anastomosis. Among the several secondary surgical geometrical features, stenosis at the SVC anastomosis or in pulmonary branches was found to be the most critical parameter in increasing the power loss. The pouch size and flare shape were found to be less significant. Compared to the third stage surgery the hydrodynamic resistance of the 2nd stage is considerably lower (both in idealized models and in anatomical models at MRI resting conditions) for both hemi- and Glenn templates. These results can impact the surgical design and planning of the staged TCPC reconstruction.
Background: We present a fundamental theoretical framework for analysis of energy dissipation in any component of the circulatory system and formulate the full energy budget for both venous and arterial circulations. New indices allowing disease-specific subject-to-subject comparisons and disease-to-disease hemodynamic evaluation (quantifying the hemodynamic severity of one vascular disease type to the other) are presented based on this formalism.
Methods and Results: Dimensional analysis of energy dissipation rate with respect to the human circulation shows that the rate of energy dissipation is inversely proportional to the square of the patient body surface area and directly proportional to the cube of cardiac output. This result verified the established formulae for energy loss in aortic stenosis that was solely derived through empirical clinical experience. Three new indices are introduced to evaluate more complex disease states: (1) circulation energy dissipation index (CEDI), (2) aortic valve energy dissipation index (AV-EDI), and (3) total cavopulmonary connection energy dissipation index (TCPC-EDI). CEDI is based on the full energy budget of the circulation and is the proper measure of the work performed by the ventricle relative to the net energy spent in overcoming frictional forces. It is shown to be 4.01 ± 0.16 for healthy individuals and above 7.0 for patients with severe aortic stenosis. Application of CEDI index on single-ventricle venous physiology reveals that the surgically created Fontan circulation, which is indeed palliative, progressively degrades in hemodynamic efficiency with growth (p < 0.001), with the net dissipation in a typical Fontan patient (Body surface area = 1.0 m2) being equivalent to that of an average case of severe aortic stenosis. AV-EDI is shown to be the proper index to gauge the hemodynamic severity of stenosed aortic valves as it accurately reflects energy loss. It is about 0.28 ± 0.12 for healthy human valves. Moderate aortic stenosis has an AV-EDI one order of magnitude higher while clinically severe aortic stenosis cases always had magnitudes above 3.0. TCPC-EDI represents the efficiency of the TCPC connection and is shown to be negatively correlated to the size of a typical "bottle-neck" region (pulmonary artery) in the surgical TCPC pathway (p < 0.05).
Conclusions: Energy dissipation in the human circulation has been analyzed theoretically to derive the proper scaling (indexing) factor. CEDI, AV-EDI, and TCPC-EDI are proper measures of the dissipative characteristics of the circulatory system, aortic valve, and the Fontan connection, respectively.
Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame.
Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and ma y be used as a superior alternative to solid implants for bone-interfacing implants.
Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI < 30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI < 50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.