Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. We extend this by applying various different dynamic analysis tools that are currently used to understand empirical resting-state fMRI (rs-fMRI) to the simulated data. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the brain network model. We conclude that the dynamic properties that explicitly examine patterns of signal as a function of time rather than spatial coordination between different brain regions in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity.
Clinical anxiety and depression are the most prevalent mental illnesses, likely representing maladaptive expressions of negative valence systems concerned with conditioned responses to fear, threat, loss, and frustrative nonreward. These conditions exhibit similar, striking sex/gender-related differences in onset, incidence, and severity for which the neural correlates are not yet established. In alarge sample of neurotypical young adults, we demonstrate that intrinsic brain dynamism metrics derived from sex-sensitive models of whole-brain network function are significantly associated with valence system traits. Surprisingly, we found that greater brain dynamism is strongly positively correlated to anxiety and depression traits in males, but almost wholly decoupled from traits for important cognitive control and reappraisal strategies associated with positive valence. Conversely, intrinsic brain dynamism is strongly positively coupled to drive, novelty-seeking and self-control in females with only rare or non-significant directional negative correlation with anxiety and depression traits. Our results suggest that the dynamic neural correlates of traits for valence, anxiety and depression are significantly different in males/men and females/women. These findings may relate to the known sex/gender-related differences in cognitive reappraisal of emotional experiences and clinical presentations of anxiety and depression, with potential relevance to gold standard therapies based on enhancing cognitive control strategies.
As neuroimaging data increase in complexity and related analytical problems follow suite, more researchers are drawn to collaborative frameworks that leverage data sets from multiple data-collection sites to balance out the complexity with an increased sample size. Although centralized data-collection approaches have dominated the collaborative scene, a number of decentralized approaches—those that avoid gathering data at a shared central store—have grown in popularity. We expect the prevalence of decentralized approaches to continue as privacy risks and communication overhead become increasingly important for researchers. In this article, we develop, implement and evaluate a decentralized version of one such widely used tool: dynamic functional network connectivity.
Our resulting algorithm, decentralized dynamic functional network connectivity (ddFNC), synthesizes a new, decentralized group independent component analysis algorithm (dgICA) with algorithms for decentralized k-means clustering. We compare both individual decentralized components and the full resulting decentralized analysis pipeline against centralized counterparts on the same data, and show that both provide comparable performance. Additionally, we perform several experiments which evaluate the communication overhead and convergence behavior of various decentralization strategies and decentralized clustering algorithms. Our analysis indicates that ddFNC is a fine candidate for facilitating decentralized collaboration between neuroimaging researchers, and stands ready for the inclusion of privacy-enabling modifications, such as differential privacy.
Catatonia is a transnosologic psychomotor syndrome with high prevalence in schizophrenia spectrum disorders (SSD). There is mounting neuroimaging evidence that catatonia is associated with aberrant frontoparietal, thalamic and cerebellar regions. Large‐scale brain network dynamics in catatonia have not been investigated so far. In this study, resting‐state fMRI data from 58 right‐handed SSD patients were considered. Catatonic symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). Group spatial independent component analysis was carried out with a multiple analysis of covariance (MANCOVA) approach to estimate and test the underlying intrinsic components (ICs) in SSD patients with (NCRS total score ≥ 3; n = 30) and without (NCRS total score = 0; n = 28) catatonia. Functional network connectivity (FNC) during rest was calculated between pairs of ICs and transient changes in connectivity were estimated using sliding windowing and clustering (to capture both static and dynamic FNC). Catatonic patients showed increased static FNC in cerebellar networks along with decreased low frequency oscillations in basal ganglia (BG) networks. Catatonic patients had reduced state changes and dwelled more in a state characterized by high within‐network correlation of the sensorimotor, visual, and default‐mode network with respect to noncatatonic patients. Finally, in catatonic patients according to DSM‐IV‐TR (n = 44), there was a significant correlation between increased within FNC in cortico‐striatal state and NCRS motor scores. The data support a neuromechanistic model of catatonia that emphasizes a key role of disrupted sensorimotor network control during distinct functional states.
A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a "gold standard" for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques.
Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders.
Clustering analysis is employed in brain dynamic functional connectivity (dFC) to cluster the data into a set of dynamic states. These states correspond to different patterns of functional connectivity that iterate through time. Although several clustering validity index (CVI) methods to determine the best clustering partition exists, the appropriateness of methods to apply in the case of dynamic connectivity analysis has not been determined.
Functional connectivity between brain regions, measured with resting state functional magnetic resonance imaging, holds great potential for understanding the basis of behavior and neuropsychiatric diseases. Recently it has become clear that correlations between the blood oxygenation level dependent (BOLD) signals from different areas vary over the course of a typical scan (6-10. min in length), though the changes are obscured by standard methods of analysis that assume the relationships are stationary. Unfortunately, because similar variability is observed in signals that share no temporal information, it is unclear which dynamic changes are related to underlying neural events. To examine this question, BOLD data were recorded simultaneously with local field potentials (LFP) from interhemispheric primary somatosensory cortex (SI) in anesthetized rats. LFP signals were converted into band-limited power (BLP) signals including delta, theta, alpha, beta and gamma. Correlation between signals from interhemispheric SI was performed in sliding windows to produce signals of correlation over time for BOLD and each BLP band. Both BOLD and BLP signals showed large changes in correlation over time and the changes in BOLD were significantly correlated to the changes in BLP. The strongest relationship was seen when using the theta, beta and gamma bands. Interestingly, while steady-state BOLD and BLP correlate with the global fMRI signal, dynamic BOLD becomes more like dynamic BLP after the global signal is regressed. As BOLD sliding window connectivity is partially reflecting underlying LFP changes, the present study suggests it may be a valuable method of studying dynamic changes in brain states.
It is difficult to distinguish schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar disorder with psychosis (BPP) as their clinical diagnoses rely on symptoms that overlap. In this paper, we investigate if there is biological evidence to support the symptom-based clinical categories by looking across the three disorders using dynamic connectivity measures, and provide meaningful characteristics on which brain functional connectivity measures are commonly or uniquely impaired. Large-sample functional magnetic resonance image (fMRI) datasets from 623 subjects including 238 healthy controls (HCs), 113 SZ patients, 132 SAD patients, and 140 BPP patients were analyzed. First, we computed whole-brain dynamic functional connectivity (DFC) using a sliding-window technique, and then extracted the individual connectivity states by applying our previously proposed decomposition-based DFC analysis method. Next, with the features from the dominant connectivity state, we assessed the clinical categories by performing both four-group (SZ, SAD, BPP and healthy control groups) and pair-wise classification using a support vector machine within cross-validation. Furthermore, we comprehensively summarized the shared and unique connectivity alterations among the disorders. In terms of the classification performance, our method achieved 69% in the four-group classification and >80% in the between-group classifications for the mean overall accuracy; and yielded 66% in the four-group classification and >80% in the between-group classifications for the mean balanced accuracy. Through summarizing the features that were automatically selected in the classifications, we found that among the three symptom-related disorders, their disorder-common impairments primarily included the decreased connectivity strength between thalamus and cerebellum and the increased strength between postcentral gyrus and thalamus. The disorder-unique changes included more various brain regions, mainly in the temporal and frontal gyrus. Our work demonstrates that dynamic functional connectivity provides biological evidence that both common and unique impairments exist in psychosis sub-groups.
Background:
Dynamic functional network connectivity (dFNC) summarizes associations among time-varying brain networks and is widely used for studying dynamics. However, most previous studies compute dFNC using temporal variability while spatial variability started receiving increasing attention. It is hence desirable to investigate spatial variability and the interaction between temporal and spatial variability.
New method:
We propose to use an adaptive variant of constrained independent vector analysis to simultaneously capture temporal and spatial variability, and introduce a goal-driven scheme for addressing a key challenge in dFNC analysis---determining the number of transient states. We apply our methods to resting-state functional magnetic resonance imaging data of schizophrenia patients (SZs) and healthy controls (HCs).
Results:
The results show spatial variability provides more features discriminative between groups than temporal variability. A comprehensive study of graph-theoretical (GT) metrics determines the optimal number of spatial states and suggests centrality as a key metric. Four networks yield significantly different levels of involvement in SZs and HCs. The high involvement of a component that relates to multiple distributed brain regions highlights dysconnectivity in SZ. One frontoparietal component and one frontal component demonstrate higher involvement in HCs, suggesting a more efficient cognitive control system relative to SZs.
Comparison with existing methods:
Spatial variability is more informative than temporal variability. The proposed goal-driven scheme determines the optimal number of states in a more interpretable way by making use of discriminative features.
Conclusion:
GT analysis is promising in dFNC analysis as it identifies distinctive transient spatial states of dFNC and reveals unique biomedical patterns in SZs.