SARS-CoV-2 outbreaks have occurred on several nautical vessels, driven by the high-density contact networks on these ships. Optimal strategies for prevention and control that account for realistic contact networks are needed. We developed a network-based transmission model for SARS-CoV-2 on the Diamond Princess outbreak to characterize transmission dynamics and to estimate the epidemiological impact of outbreak control and prevention measures. This model represented the dynamic multi-layer network structure of passenger-passenger, passenger-crew, and crew-crew contacts, both before and after the large-scale network lockdown imposed on the ship in response to the disease outbreak.
Model scenarios evaluated variations in the timing of the network lockdown, reduction in contact intensity within the sub-networks, and diagnosis-based case isolation on outbreak prevention. We found that only extreme restrictions in contact patterns during network lockdown and idealistic clinical response scenarios could avert a major COVID-19 outbreak. Contact network changes associated with adequate outbreak prevention were the restriction of passengers to their cabins, with limited passenger-crew contacts. Clinical response strategies required for outbreak prevention included early mass screening with an ideal PCR test (100% sensitivity) and immediate case isolation upon diagnosis. Public health restrictions on optional leisure activities like these should be considered until longer-term effective solutions such as a COVID-19 vaccine become widely available.
Clustering analysis is employed in brain dynamic functional connectivity (dFC) to cluster the data into a set of dynamic states. These states correspond to different patterns of functional connectivity that iterate through time. Although several clustering validity index (CVI) methods to determine the best clustering partition exists, the appropriateness of methods to apply in the case of dynamic connectivity analysis has not been determined.
It is difficult to distinguish schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar disorder with psychosis (BPP) as their clinical diagnoses rely on symptoms that overlap. In this paper, we investigate if there is biological evidence to support the symptom-based clinical categories by looking across the three disorders using dynamic connectivity measures, and provide meaningful characteristics on which brain functional connectivity measures are commonly or uniquely impaired. Large-sample functional magnetic resonance image (fMRI) datasets from 623 subjects including 238 healthy controls (HCs), 113 SZ patients, 132 SAD patients, and 140 BPP patients were analyzed. First, we computed whole-brain dynamic functional connectivity (DFC) using a sliding-window technique, and then extracted the individual connectivity states by applying our previously proposed decomposition-based DFC analysis method. Next, with the features from the dominant connectivity state, we assessed the clinical categories by performing both four-group (SZ, SAD, BPP and healthy control groups) and pair-wise classification using a support vector machine within cross-validation. Furthermore, we comprehensively summarized the shared and unique connectivity alterations among the disorders. In terms of the classification performance, our method achieved 69% in the four-group classification and >80% in the between-group classifications for the mean overall accuracy; and yielded 66% in the four-group classification and >80% in the between-group classifications for the mean balanced accuracy. Through summarizing the features that were automatically selected in the classifications, we found that among the three symptom-related disorders, their disorder-common impairments primarily included the decreased connectivity strength between thalamus and cerebellum and the increased strength between postcentral gyrus and thalamus. The disorder-unique changes included more various brain regions, mainly in the temporal and frontal gyrus. Our work demonstrates that dynamic functional connectivity provides biological evidence that both common and unique impairments exist in psychosis sub-groups.
Catatonia is a transnosologic psychomotor syndrome with high prevalence in schizophrenia spectrum disorders (SSD). There is mounting neuroimaging evidence that catatonia is associated with aberrant frontoparietal, thalamic and cerebellar regions. Large‐scale brain network dynamics in catatonia have not been investigated so far. In this study, resting‐state fMRI data from 58 right‐handed SSD patients were considered. Catatonic symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). Group spatial independent component analysis was carried out with a multiple analysis of covariance (MANCOVA) approach to estimate and test the underlying intrinsic components (ICs) in SSD patients with (NCRS total score ≥ 3; n = 30) and without (NCRS total score = 0; n = 28) catatonia. Functional network connectivity (FNC) during rest was calculated between pairs of ICs and transient changes in connectivity were estimated using sliding windowing and clustering (to capture both static and dynamic FNC). Catatonic patients showed increased static FNC in cerebellar networks along with decreased low frequency oscillations in basal ganglia (BG) networks. Catatonic patients had reduced state changes and dwelled more in a state characterized by high within‐network correlation of the sensorimotor, visual, and default‐mode network with respect to noncatatonic patients. Finally, in catatonic patients according to DSM‐IV‐TR (n = 44), there was a significant correlation between increased within FNC in cortico‐striatal state and NCRS motor scores. The data support a neuromechanistic model of catatonia that emphasizes a key role of disrupted sensorimotor network control during distinct functional states.
Background:
Dynamic functional network connectivity (dFNC) summarizes associations among time-varying brain networks and is widely used for studying dynamics. However, most previous studies compute dFNC using temporal variability while spatial variability started receiving increasing attention. It is hence desirable to investigate spatial variability and the interaction between temporal and spatial variability.
New method:
We propose to use an adaptive variant of constrained independent vector analysis to simultaneously capture temporal and spatial variability, and introduce a goal-driven scheme for addressing a key challenge in dFNC analysis---determining the number of transient states. We apply our methods to resting-state functional magnetic resonance imaging data of schizophrenia patients (SZs) and healthy controls (HCs).
Results:
The results show spatial variability provides more features discriminative between groups than temporal variability. A comprehensive study of graph-theoretical (GT) metrics determines the optimal number of spatial states and suggests centrality as a key metric. Four networks yield significantly different levels of involvement in SZs and HCs. The high involvement of a component that relates to multiple distributed brain regions highlights dysconnectivity in SZ. One frontoparietal component and one frontal component demonstrate higher involvement in HCs, suggesting a more efficient cognitive control system relative to SZs.
Comparison with existing methods:
Spatial variability is more informative than temporal variability. The proposed goal-driven scheme determines the optimal number of states in a more interpretable way by making use of discriminative features.
Conclusion:
GT analysis is promising in dFNC analysis as it identifies distinctive transient spatial states of dFNC and reveals unique biomedical patterns in SZs.
The slow fluctuations of the blood-oxygenation-level dependent (BOLD) signal in resting-state fMRI are widely utilized as a surrogate marker of ongoing neural activity. Spontaneous neural activity includes a broad range of frequencies, from infraslow (< 0.5. Hz) fluctuations to fast action potentials. Recent studies have demonstrated a correlative relationship between the BOLD fluctuations and power modulations of the local field potential (LFP), particularly in the gamma band. However, the relationship between the BOLD signal and the infraslow components of the LFP, which are directly comparable in frequency to the BOLD fluctuations, has not been directly investigated. Here we report a first examination of the temporal relation between the resting-state BOLD signal and infraslow LFPs using simultaneous fMRI and full-band LFP recording in rat. The spontaneous BOLD signal at the recording sites exhibited significant localized correlation with the infraslow LFP signals as well as with the slow power modulations of higher-frequency LFPs (1-100. Hz) at a delay comparable to the hemodynamic response time under anesthesia. Infraslow electrical activity has been postulated to play a role in attentional processes, and the findings reported here suggest that infraslow LFP coordination may share a mechanism with the large-scale BOLD-based networks previously implicated in task performance, providing new insight into the mechanisms contributing to the resting state fMRI signal.
by
Michaël E. Belloy;
Maarten Naeyaert;
Anzar Abbas;
Disha Shah;
Verdi Vanreusel;
Johan Van Audekerke;
Shella Keilholz;
Georgios A. Keliris;
Annemie Van der Linden;
Marleen Verhoye
Time-resolved ‘dynamic’ over whole-period 'static’ analysis of low frequency (LF) blood-oxygen level dependent (BOLD) fluctuations provides many additional insights into the macroscale organization and dynamics of neural activity. Although there has been considerable advancement in the development of mouse resting state fMRI (rsfMRI), very little remains known about its dynamic repertoire. Here, we report for the first time the detection of a set of recurring spatiotemporal Quasi-Periodic Patterns (QPPs) in mice, which show spatial similarity with known resting state networks. Furthermore, we establish a close relationship between several of these patterns and the global signal. We acquired high temporal rsfMRI scans under conditions of low (LA) and high (HA) medetomidine-isoflurane anesthesia. We then employed the algorithm developed by Majeed et al. (2011), previously applied in rats and humans, which detects and averages recurring spatiotemporal patterns in the LF BOLD signal. One type of observed patterns in mice was highly similar to those originally observed in rats, displaying propagation from lateral to medial cortical regions, which suggestively pertain to a mouse Task-Positive like network (TPN) and Default Mode like network (DMN). Other QPPs showed more widespread or striatal involvement and were no longer detected after global signal regression (GSR). This was further supported by diminished detection of subcortical dynamics after GSR, with cortical dynamics predominating. Observed QPPs were both qualitatively and quantitatively determined to be consistent across both anesthesia conditions, with GSR producing the same outcome. Under LA, QPPs were consistently detected at both group and single subject level. Under HA, consistency and pattern occurrence rate decreased, whilst cortical contribution to the patterns diminished. These findings confirm the robustness of QPPs across species and demonstrate a new approach to study mouse LF BOLD spatiotemporal dynamics and mechanisms underlying functional connectivity. The observed impact of GSR on QPPs might help better comprehend its controversial role in conventional resting state studies. Finally, consistent detection of QPPs at single subject level under LA promises a step forward towards more reliable mouse rsfMRI and further confirms the importance of selecting an optimal anesthesia regime.
by
Anna K Bonkhoff;
Flor A Espinoza;
Harshvardhan Gazula;
Victor M Vergara;
Lukas Hensel;
Jochen Michely;
Theresa Paul;
Anne K Rehme;
Lukas J Volz;
Gereon R Fink;
Vince Calhoun;
Christian Grefkes
Acute ischaemic stroke disturbs healthy brain organization, prompting subsequent plasticity and reorganization to compensate for the loss of specialized neural tissue and function. Static resting state functional MRI studies have already furthered our understanding of cerebral reorganization by estimating stroke-induced changes in network connectivity aggregated over the duration of several minutes. In this study, we used dynamic resting state functional MRI analyses to increase temporal resolution to seconds and explore transient configurations of motor network connectivity in acute stroke. To this end, we collected resting state functional MRI data of 31 patients with acute ischaemic stroke and 17 age-matched healthy control subjects. Stroke patients presented with moderate to severe hand motor deficits. By estimating dynamic functional connectivity within a sliding window framework, we identified three distinct connectivity configurations of motor-related networks. Motor networks were organized into three regional domains, i.e. a cortical, subcortical and cerebellar domain. The dynamic connectivity patterns of stroke patients diverged from those of healthy controls depending on the severity of the initial motor impairment. Moderately affected patients (n = 18) spent significantly more time in a weakly connected configuration that was characterized by low levels of connectivity, both locally as well as between distant regions. In contrast, severely affected patients (n = 13) showed a significant preference for transitions into a spatially segregated connectivity configuration. This configuration featured particularly high levels of local connectivity within the three regional domains as well as anti-correlated connectivity between distant networks across domains. A third connectivity configuration represented an intermediate connectivity pattern compared to the preceding two, and predominantly encompassed decreased interhemispheric connectivity between cortical motor networks independent of individual deficit severity. Alterations within this third configuration thus closely resembled previously reported ones originating from static resting state functional MRI studies post-stroke. In summary, acute ischaemic stroke not only prompted changes in connectivity between distinct networks, but it also caused characteristic changes in temporal properties of large-scale network interactions depending on the severity of the individual deficit. These findings offer new vistas on the dynamic neural mechanisms underlying acute neurological symptoms, cortical reorganization and treatment effects in stroke patients.
by
JM Stephen;
I Solis;
J Janowich;
M Stern;
MR Frenzel;
JA Eastman;
MS Mills;
CM Embury;
NM Coolidge;
E Heinrichs-Graham;
A Mayer;
J Liu;
YP Wang;
TW Wilson;
Vince Calhoun
Brain development has largely been studied through unimodal analysis of neuroimaging data, providing independent results for structural and functional data. However, structure clearly impacts function and vice versa, pointing to the need for performing multimodal data collection and analysis to improve our understanding of brain development, and to further inform models of typical and atypical brain development across the lifespan. Ultimately, such models should also incorporate genetic and epigenetic mechanisms underlying brain structure and function, although currently this area is poorly specified. To this end, we are reporting here a multi-site, multi-modal dataset that captures cognitive function, brain structure and function, and genetic and epigenetic measures to better quantify the factors that influence brain development in children originally aged 9–14 years. Data collection for the Developmental Chronnecto-Genomics (Dev-CoG) study (http://devcog.mrn.org/) includes cognitive, emotional, and social performance scales, structural and functional MRI, diffusion MRI, magnetoencephalography (MEG), and saliva collection for DNA analysis of single nucleotide polymorphisms (SNPs) and DNA methylation patterns. Across two sites (The Mind Research Network and the University of Nebraska Medical Center), data from over 200 participants were collected and these children were re-tested annually for at least 3 years. The data collection protocol, sample demographics, and data quality measures for the dataset are presented here. The sample will be made freely available through the collaborative informatics and neuroimaging suite (COINS) database at the conclusion of the study.
Background: Dynamic functional network connectivity (dFNC) estimated from resting-state functional magnetic imaging (rs-fMRI) studies the temporally varying functional integration between brain networks. In a conventional dFNC pipeline, a clustering stage to summarize the connectivity patterns that are transiently but reliably realized over the course of a scanning session. However, identifying the right number of clusters (or states) through a conventional clustering criterion computed by running the algorithm repeatedly over a large range of cluster numbers is time-consuming and requires substantial computational power even for typical dFNC datasets, and the computational demands become prohibitive as datasets become larger and scans longer. Here we developed a new dFNC pipeline based on a two-step clustering approach to analyze large dFNC data without having access to huge computational power. Methods: In the proposed dFNC pipeline, we implement two-step clustering. In the first step, we randomly use a sub-sample dFNC data and identify several sets of states at different model orders. In the second step, we aggregate all dFNC states estimated from all iterations in the first step and use this to identify the optimum number of clusters using the elbow criteria. Additionally, we use this new reduced dataset and estimate a final set of states by performing a second kmeans clustering on the aggregated dFNC states from the first k-means clustering. To validate the reproducibility of results in the new pipeline, we analyzed four dFNC datasets from the human connectome project (HCP). Results: We found that both conventional and proposed dFNC pipelines generate similar brain dFNC states across all four sessions with more than 99% similarity. We found that the conventional dFNC pipeline evaluates the clustering order and finds the final dFNC state in 275 min, while this process takes only 11 min for the proposed dFNC pipeline. In other words, the new pipeline is 25 times faster than the traditional method in finding the optimum number of clusters and finding the final dFNC states. We also found that the new method results in better clustering quality than the conventional approach (p < 0.001). We show that the results are replicated across four different datasets from HCP. Conclusion: We developed a new analytic pipeline that facilitates the analysis of large dFNC datasets without having access to a huge computational power source. We validated the reproducibility of the result across multiple datasets.