Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration.
Glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides that interact with a variety of positively charged growth factors. In this review article the effects of engineering GAG chemistry for molecular delivery applications in regenerative medicine are presented. Three major areas of focus at the structure-function-property interface are discussed: (1) macromolecular properties of GAGs; (2) effects of chemical modifications on protein binding; (3) degradation mechanisms of GAGs. GAG-protein interactions can be based on: (1) GAG sulfation pattern; (2) GAG carbohydrate conformation; (3) GAG polyelectrolyte behavior. Chemical modifications of GAGs, which are commonly performed to engineer molecular delivery systems, affect protein binding and are highly dependent on the site of modification on the GAG molecules. The rate and mode of degradation can determine the release of molecules as well as the length of GAG fragments to which the cargo is electrostatically coupled and eventually released from the delivery system. Overall, GAG-based polymers are a versatile biomaterial platform offering novel means to engineer molecular delivery systems with a high degree of control in order to better treat a range of degenerated or injured tissues.