Background: Urea, the end product of protein metabolism, has been considered to have negligible toxicity for a long time. Our previous study showed a depression phenotype in urea transporter (UT) B knockout mice, which suggests that abnormal urea metabolism may cause depression. The purpose of this study was to determine if urea accumulation in brain is a key factor causing depression using clinical data and animal models.
Methods: A meta-analysis was used to identify the relationship between depression and chronic diseases. Functional Magnetic Resonance Imaging (fMRI) brain scans and common biochemical indexes were compared between the patients and healthy controls. We used behavioural tests, electrophysiology, and molecular profiling techniques to investigate the functional role and molecular basis in mouse models.
Findings: After performing a meta-analysis, we targeted the relevance between chronic kidney disease (CKD) and depression. In a CKD mouse model and a patient cohort, depression was induced by impairing the medial prefrontal cortex. The enlarged cohort suggested that urea was responsible for depression. In mice, urea was sufficient to induce depression, interrupt long-term potentiation (LTP) and cause loss of synapses in several models. The mTORC1-S6K pathway inhibition was necessary for the effect of urea. Lastly, we identified that the hydrolysate of urea, cyanate, was also involved in this pathophysiology.
Interpretation: These data indicate that urea accumulation in brain is an independent factor causing depression, bypassing the psychosocial stress. Urea or cyanate carbamylates mTOR to inhibit the mTORC1-S6K dependent dendritic protein synthesis, inducing impairment of synaptic plasticity in mPFC and depression-like behaviour. CKD patients may be able to attenuate depression only by strict management of blood urea.
Objectives: Evidence from industrialized populations suggests that urine concentrating ability declines with age. However, lifestyle factors including episodic protein intake and low hypertension may help explain differences between populations. Whether this age-related decline occurs among small-scale populations with active lifestyles and non-Western diets is unknown. We test the universality of age-related urine concentration decline.
Materials and Methods: We used urine specific gravity (Usg) and urine osmolality (Uosm) data from 15,055 U.S. nonpregnant adults without kidney failure aged 18–80 in 2007–2012 participating in the National Health and Nutrition Examination Survey (NHANES). We tested the relationship of age on urine concentration biomarkers with multiple linear regressions using survey commands. We compared results to longitudinal data on Usg from 116 Tsimane’ forager-horticulturalists (266 observations) adults aged 18–83 in 2013–2014 from Lowland Bolivia, and to 38 Hadza hunter-gatherers (156 observations) aged 18–75 in 2010–2015 from Tanzania using random-effects panel linear regressions.
Results: Among U.S. adults, age was significantly negatively associated with Usg (Adjusted beta [B] = −0.0009 g/mL/10 years; SE = 0.0001; p < 0.001) and Uosm (B = −28.1 mOsm/kg/10 yr; SE = 2.4; p < 0.001). In contrast, among Tsimane’ (B = 0.0003 g/mL/10 yr; SE = 0.0002; p = 0.16) and Hadza (B = −0.0004 g/mL/10 yr; SE = 0.0004; p = 0.29) age was not associated with Usg. Older Tsimane’ and Hadza exhibited similar within-individual variability in Usg equivalent to younger adults. Discussion: While U.S. adults exhibited age-related declines in urine concentration, Tsimane’ and Hadza adults did not exhibit the same statistical decline in Usg. Mismatches between evolved physiology and modern environments in lifestyle may affect kidney physiology and disease risk.
Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
AIM: This study evaluates the effect of dapagliflozin, a SGLT2 inhibitor, on fluid or electrolyte balance and its effect on urea transporter-A1 (UT-A1), aquaporin-2 (AQP2) and Na-K-2Cl cotransporter (NKCC2) protein abundance in diabetic rats. METHODS: Diabetes mellitus (DM) was induced by injection of streptozotocin into the tail vein. Serum Na+, K+, Cl- concentration, urine Na+, K+, Cl- excretion, blood glucose, urine glucose excretion, urine volume, urine osmolality and urine urea excretion were analyzed after the administration of dapagliflozin. UT-A1, AQP2 and NKCC2 proteins were detected by western blot. RESULTS: Dapagliflozin treatment decreased blood glucose concentration by 38% at day 7 and by 47% at day 14 and increased the urinary glucose excretion rate compared with the untreated diabetic animals. Increased 24-hour urine volume, decreased urine osmolality and hyponatremia, hypokalemia and hypochloremia observed in diabetic rats were attenuated by dapagliflozin treatment. Western blot analysis showed that UT-A1, AQP2 and NKCC2 proteins are upregulated in DM rats over control rats; dapagliflozin treatment results in a further increase in inner medulla tip UT-A1 protein abundance by 42% at day 7 and by 46% at day 14, but it did not affect the DM-induced upregulation of AQP2 and NKCC2 proteins. CONCLUSION: Dapagliflozin treatment augmented the compensatory changes in medullary transport proteins in DM. These changes would tend to conserve solute and water even with persistent glycosuria. Therefore, diabetic rats treated with dapagliflozin have a mild osmotic diuresis compared to nondiabetic animals, but this does not result in an electrolyte disorder or significant volume depletion.
BACKGROUND: Urea transporters (UTs) are important in urine concentration and in urea recycling, and UT-B has been implicated in both. In kidney, UT-B was originally localized to outer medullary descending vasa recta, and more recently detected in inner medullary descending vasa recta. Endogenously produced microRNAs (miRs) bind to the 3'UTR of genes and generally inhibit their translation, thus playing a pivotal role gene regulation. METHODS: Mice were dehydrated for 24 hours then sacrificed. Inner and outer medullas were analyzed by polymerase chain reaction (PCR) and quantitative PCR for miRNA expression and analyzed by western blotting for protein abundance. RESULTS: MiRNA sequencing analysis of mouse inner medullas showed a 40% increase in miRNA-200c in dehydrated mice compared with controls. An in silico analysis of the targets for miR-200c revealed that miRNA-200c could directly target the gene for UT-B. PCR confirmed that miR-200c is up-regulated in the inner medullas of dehydrated mice while western blot showed that UT-B protein abundance was down-regulated in the same portion of the kidney. However, in the outer medulla, miR-200c was reduced and UT-B protein was increased in dehydrated mice. CONCLUSIONS: This is the first indication that UT-B protein and miR-200c may each be differentially regulated by dehydration within the kidney outer and inner medulla. The inverse correlation between the direction of change in miR-200c and UT-B protein abundance in both the inner and outer medulla suggests that miR-200c may be associated with the change in UT-B protein in these 2 portions of the kidney medulla.
Aim: We have reported earlier that a high salt intake triggered an aestivation-like natriuretic-ureotelic body water conservation response that lowered muscle mass and increased blood pressure. Here, we tested the hypothesis that a similar adaptive water conservation response occurs in experimental chronic renal failure. Methods: In four subsequent experiments in Sprague Dawley rats, we used surgical 5/6 renal mass reduction (5/6 Nx) to induce chronic renal failure. We studied solute and water excretion in 24-hour metabolic cage experiments, chronic blood pressure by radiotelemetry, chronic metabolic adjustment in liver and skeletal muscle by metabolomics and selected enzyme activity measurements, body Na+, K+ and water by dry ashing, and acute transepidermal water loss in conjunction with skin blood flow and intra-arterial blood pressure. Results: 5/6 Nx rats were polyuric, because their kidneys could not sufficiently concentrate the urine. Physiological adaptation to this renal water loss included mobilization of nitrogen and energy from muscle for organic osmolyte production, elevated norepinephrine and copeptin levels with reduced skin blood flow, which by means of compensation reduced their transepidermal water loss. This complex physiologic-metabolic adjustment across multiple organs allowed the rats to stabilize their body water content despite persisting renal water loss, albeit at the expense of hypertension and catabolic mobilization of muscle protein. Conclusion: Physiological adaptation to body water loss, termed aestivation, is an evolutionary conserved survival strategy and an under-studied research area in medical physiology, which besides hypertension and muscle mass loss in chronic renal failure may explain many otherwise unexplainable phenomena in medicine.