We have studied the role of sequence context upon RNA polymerase II arrest by a cyclobutane pyrimidine dimer using an in vitro transcription system consisting of templates containing a specifically located cyclobutane pyrimidine dimer (CPD) and purified RNA polymerase II (RNAP II) and initiation factors. We selected a model sequence containing a well characterized site for RNAP II arrest in vitro, the human histone H3.3 gene arrest site. The 13-base pair core of the arrest sequence contains two runs of T in the nontranscribed strand that impose a bend in the DNA. We hypothesized that arrest of RNAP II might be affected by the presence of a CPD, based upon the observation that a CPD located at the center of dA6 · dT6 tract eliminates bending (Wang, C.-I., and Taylor, J.-S. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9072-9076). We examined the normal H3.3 sequence and a mutant sequence containing a T → G transversion, which reduces bending and efficiency of arrest. We show that a CPD in the transcribed strand at either of two locations in the arrest site is a potent block to transcription. However, a CPD in the nontranscribed strand only transiently pauses RNAP II. The CPD in concert with a mutation in the arrest site can reduce the extent of bending of the DNA and improve readthrough efficiency. These results demonstrate the potential importance of sequence context for the effect of CPDs within transcribed sequences.
The novel zinc finger protein 121 (ZNF121) has been demonstrated to physically and functionally associate with the MYC oncoprotein to regulate cell proliferation and likely breast cancer development. To further understand how ZNF121 functions in cell proliferation and carcinogenesis, we identified and characterized the interaction of ZNF121 with zinc finger and BRCA1-interacting protein with a KRAB domain 1 (ZBRK1), a breast and ovarian cancer susceptibility protein 1 (BRCA1)-interacting protein, using the yeast two-hybrid assay and other approaches. We also found that ZNF121 bound to BRCA1. Functionally, ZFN121 suppressed the expression of ANG1 and HMGA2, two common downstream targets of ZBRK1 and BRCA1. Interestingly, ZNF121 also regulated the expression of BRCA1 and ZBRK1. These findings suggest that ZNF121 is likely a member of the BRCA1/CtIP/ZBRK1 repressor complex that plays a role in breast cancer.