Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
by
Raj Medapalli;
Chirag R. Parikh;
Kirsha Gordon;
Sheldon T. Brown;
Adeel A. Butt;
Cynthia L. Gibert;
David Rimland;
Maria C. Rodriguez-Barradas;
Chung-Chou Chang;
Amy C. Justice;
John Chijiang He;
Christina M. Wyatt
Introduction: Approximately, 15% of HIV-infected individuals have comorbid diabetes. Studies suggest that HIV and diabetes have an additive effect on chronic kidney disease (CKD) progression; however, this observation may be confounded by differences in traditional CKD risk factors. Methods: We studied a national cohort of HIV-infected and matched HIV-uninfected individuals who received care through the Veterans Healthcare Administration. Subjects were divided into 4 groups based on baseline HIV and diabetes status, and the rate of progression to an estimated glomerular filtration rate (eGFR) < 45 mL/min/1.73m was compared using Cox-proportional hazards modeling to adjust for CKD risk factors. Results: About 31,072 veterans with baseline eGFR ≥45 mL/min/1.73m 2 (10,626 with HIV only, 5088 with diabetes only, and 1796 with both) were followed for a median of 5 years. Mean baseline eGFR was 94 mL/min/1.73m 2 , and 7% progressed to an eGFR < 45 mL/min/1.73m 2 . Compared with those without HIV or diabetes, the relative rate of progression was increased in individuals with diabetes only [adjusted hazard ratio (HR) 2.48; 95% confidence interval (CI): 2.19 to 2.80], HIV only [HR: 2.80, 95% CI: 2.50 to 3.15] , and both HIV and diabetes [HR: 4.47, 95% CI: 3.87 to 5.17]. DISCUSSION:: Compared with patients with only HIV or diabetes, patients with both diagnoses are at significantly increased risk of progressive CKD even after adjusting for traditional CKD risk factors. Future studies should evaluate the relative contribution of complex comorbidities and accompanying polypharmacy to the risk of CKD in HIV-infected individuals and prospectively investigate the use of cART, glycemic control, and adjunctive therapy to delay CKD progression.
Aim: Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Methods: Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. Results: PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Conclusion: Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1’s strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 –binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
The renal epithelial sodium channel (ENaC) provides regulated sodium transport in the distal nephron. The effects of intracellular calcium ([Ca2+]i) on this channel are only beginning to be elucidated. It appears from previous studies that the [Ca2+]i increases downstream of ATP administration may have a polarized effect on ENaC, where apical application of ATP and the subsequent [Ca2+]i increase have an inhibitory effect on the channel, whereas basolateral ATP and [Ca2+]i have a stimulatory effect. We asked whether this polarized effect of ATP is, in fact, reflective of a polarized effect of increased [Ca2+]i on ENaC and what underlying mechanism is responsible. We began by performing patch clamp experiments in which ENaC activity was measured during apical or basolateral application of ionomycin to increase [Ca2+]i near the apical or basolateral membrane, respectively. We found that ENaC does indeed respond to increased [Ca2+]i in a polarized fashion, with apical increases being inhibitory and basolateral increases stimulating channel activity. In other epithelial cell types, mitochondria sequester [Ca2+]i, creating [Ca2+]i signaling microdomains within the cell that are dependent on mitochondrial localization. We found that mitochondria localize in bands just beneath the apical and basolateral membranes in two different cortical collecting duct principal cell lines and in cortical collecting duct principal cells in mouse kidney tissue. We found that inhibiting mitochondrial [Ca2+]i uptake destroyed the polarized response of ENaC to [Ca2+]i. Overall, our data suggest that ENaC is regulated by [Ca2+]i in a polarized fashion and that this polarization is maintained by mitochondrial [Ca2+]i sequestration.
The intercalated cell Cl−/HCO3− exchanger, pendrin, modulates ENaC subunit abundance and function. Whether ENaC modulates pendrin abundance and function is however unknown. Because αENaC mRNA has been detected in pendrin-positive intercalated cells, we hypothesized that ENaC, or more specifically the αENaC subunit, modulates intercalated cell function. The purpose of this study was therefore to determine if αENaC is expressed at the protein level in pendrin-positive intercalated cells and to determine if αENaC gene ablation or constitutively upregulating ENaC activity changes pendrin abundance, subcellular distribution, and/or function. We observed diffuse, cytoplasmic αENaC label in pendrin-positive intercalated cells from both mice and rats, with much lower label intensity in pendrin-negative, type A intercalated cells. However, while αENaC gene ablation within principal and intercalated cells of the CCD reduced Cl− absorption, it did not change pendrin abundance or subcellular distribution in aldosterone-treated mice. Further experiments used a mouse model of Liddle’s syndrome to explore the effect of increasing ENaC channel activity on pendrin abundance and function. The Liddle’s variant did not increase either total or apical plasma membrane pendrin abundance in aldosterone-treated or in NaCl-restricted mice. Similarly, while the Liddle’s mutation increased total Cl− absorption in CCDs from aldosterone-treated mice, it did not significantly affect the change in Cl− absorption seen with pendrin gene ablation. We conclude that in rats and mice, αENaC localizes to pendrin-positive ICs where its physiological role remains to be determined. While pendrin modulates ENaC abundance, subcellular distribution, and function, ENaC does not have a similar effect on pendrin.