This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Recent evidence suggests that grammatical aspect can bias how individuals perceive criminal intentionality during discourse comprehension. Given that criminal intentionality is a common criterion for legal definitions (e.g., first-degree murder), the present study explored whether grammatical aspect may also impact legal judgments. In a series of four experiments participants were provided with a legal definition and a description of a crime in which the grammatical aspect of provocation and murder events were manipulated. Participants were asked to make a decision (first- vs. second-degree murder) and then indicate factors that impacted their decision. Findings suggest that legal judgments can be affected by grammatical aspect but the most robust effects were limited to temporal dynamics (i.e., imperfective aspect results in more murder actions than perfective aspect), which may in turn influence other representational systems (i.e., number of murder actions positively predicts perceived intentionality). In addition, findings demonstrate that the influence of grammatical aspect on situation model construction and evaluation is dependent upon the larger linguistic and semantic context. Together, the results suggest grammatical aspect has indirect influences on legal judgments to the extent that variability in aspect changes the features of the situation model that align with criteria for making legal judgments.
by
Susan LeGendre-McGhee;
Photini S. Rice;
R. Andrew Wall;
Kyle J. Sprute;
Ramireddy Bommireddy;
Amber M. Luttman;
Raymond B. Nagle;
Edward R. Abril;
Katrina Farrell;
Chiu-Hsieh Hsu;
Denise J. Roe;
Eugene W. Gerner;
Natalia A. Ignatenko;
Jennifer K. Barton
Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models.