by
Heather M. Walline;
Thomas E. Carey;
Christine M. Goudsmit;
Emily L. Bellile;
Gypsyamber D'Souza;
Lisa A. Peterson;
Jonathan B. McHugh;
Sara I. Pai;
J. Jack Lee;
Dong M Shin;
Robert L. Ferris
In this study, high-risk HPV (hrHPV) incidence, prognostic biomarkers, and outcome were assessed in HIV-positive (case) and HIV-negative (control) patients with head and neck squamous cell cancer (HNSCC). HIV-positive cases were matched to controls by tumor site, sex, and age at cancer diagnosis. A tissue microarray (TMA) was constructed and DNA isolated from tumor tissue. MultiPlex-PCR MassArray, L1-PCR, and in situ hybridization were used to assess hrHPV. TMA sections were stained for p16ink4a, TP53, RB, CCND1, EGFR, and scored for intensity and proportion of positive tumor cells. The HNSCC cohort included 41 HIV-positive cases and 41 HIV-negative controls. Tumors from 11 of 40 (28%) cases, and 10 of 41 (24%) controls contained hrHPV. p16 expression, indicative of E7 oncogene activity, was present in 10 of 11 HPV-positive cases and 7 of 10 HPV-positive controls. Low p16 and high TP53 expression in some HPV-positive tumors suggested HPV-independent tumorigenesis. Survival did not differ in cases and controls. RB expression was significantly associated with poor survival (P = 0.01). High TP53 expression exhibited a trend for poorer survival (P = 0.12), but among cases, association with poor survival reached statistical significance (P = 0.04). The proportion of HPV-positive tumors was similar, but the heterogeneity of HPV types was higher in the HIV-positive cases than in HIV-negative controls. High RB expression predicted poor survival, and high TP53 expression was associated with poorer survival in the HIV-positive cases but not HIV-negative controls.
The STK11/LKB1 gene encodes a ubiquitously expressed serine/threonine kinase that is mutated in multiple sporadic cancers including non-small cell lung carcinomas, pancreatic cancers, and melanomas. LKB1 affects multiple cellular functions including cell growth, cell cycle progression, metabolism, cell polarity and migration. To date, only a limited number of studies have assessed the status of LKB1 in cervical cancers. Herein, we investigate DNA methylation, DNA mutation, and transcription at the LKB1 locus in cervical cancer cell lines. We identified homozygous deletions of 25–85kb in the HeLa and SiHa cell lines. Deletion breakpoint analysis in HeLa cells revealed that the deletion resulted from an Alu-recombination mediated deletion (ARMD) and generated a novel LKB1 fusion transcript driven by an uncharacterized CpG island promoter located ~11kb upstream of LKB1. Although the homozygous deletion in SiHa cells removes the entire LKB1 gene and portions of the neighboring genes SBNO2 and c19orf26, this deletion also generates a fusion transcript driven by the c19orf26 promoter and comprised of both c19orf26 and SBNO2 sequences. Further analyses of public gene expression and mutation databases suggest that LKB1 and its neighboring genes are frequently dysregulated in primary cervical cancers. Thus, homozygous deletions affecting LKB1 in cervical cancers may generate multiple fusion transcripts involving LKB1, SBNO2, and c19orf26.
by
Joseph Chao;
Timothy W. Synold;
Robert J. Morgan Jr.;
Charles Kunos;
Jeff Longmate;
Heinz-Josef Lenz;
Dean Lim;
Stephen Shibata;
Vincent Chung;
Ronald G. Stoller;
Chandra P. Belani;
David R. Gandara;
Mark McNamara;
Barbara J. Gitlitz;
Derick H. Lau;
Suresh S Ramalingam;
Angela Davies;
Igor Espinoza-Delgado;
Edward M. Newman;
Yun Yen
Background: 3-Aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) is a novel small-molecule ribonucleotide reductase inhibitor. This study was designed to estimate the maximum tolerated dose (MTD) and oral bioavailability of 3-AP in patients with advanced-stage solid tumors.
Methods: Twenty patients received one dose of intravenous and subsequent cycles of oral 3-AP following a 3 + 3 patient dose escalation. Intravenous 3-AP was administered to every patient at a fixed dose of 100 mg over a 2-h infusion 1 week prior to the first oral cycle. Oral 3-AP was administered every 12 h for 5 consecutive doses on days 1-3, days 8-10, and days 15-17 of every 28-day cycle. 3-AP was started at 50 mg with a planned dose escalation to 100, 150, and 200 mg. Dose-limiting toxicities (DLT) and bioavailability were evaluated.
Results: Twenty patients were enrolled. For dose level 1 (50 mg), the second of three treated patients had a DLT of grade 3 hypertension. In the dose level 1 expansion cohort, three patients had no DLTs. No further DLTs were encountered during escalation until the 200-mg dose was reached. At the 200 mg 3-AP dose level, two treated patients had DLTs of grade 3 hypoxia. One additional DLT of grade 4 febrile neutropenia was subsequently observed at the de-escalated 150 mg dose. One DLT in 6 evaluable patients established the MTD as 150 mg per dose on this dosing schedule. Responses in the form of stable disease occurred in 5 (25%) of 20 patients. The oral bioavailability of 3-AP was 67 ± 29% and was consistent with the finding that the MTD by the oral route was 33% higher than by the intravenous route.
Conclusions: Oral 3-AP is well tolerated and has an MTD similar to its intravenous form after accounting for the oral bioavailability. Oral 3-AP is associated with a modest clinical benefit rate of 25% in our treated patient population with advanced solid tumors.
Cisplatin is one of the effective chemotherapeutics in the treatment of several types of cancers. However, in addition to the efforts against to its toxicity, the amelioration of cisplatin sensitivity is an important point in treatment of cervical cancer. To do so, additional substances such as epigallocatechin gallate (EGCG), a polyphenol in green tea, have been used in combination with chemotherapeutics. We aimed to investigate the possible molecular pathways to potentiate cervical cancer cell (HeLa) growth inhibition by combination therapy of cisplatin and EGCG. HeLa cells were treated with EGCG (25 μM), cisplatin (250 nM), and their combination for 24 h. Cell viability was determined by MTS Assay. We analyzed the expressions of NF-κB p65, COX-2, Nrf2, HO-1, p-mTOR, p-p70S6K1, p-4E-BP1, and p-Akt by Western blot analysis. Herein, we have demonstrated that EGCG works synergistic with cisplatin in inhibiting growth of cervical cancer cells. EGCG improved efficacy of cisplatin treatment in HeLa cells by regulating NFκB p65, COX-2, p-Akt, and p-mTOR pathways, whereas it increased the expression levels of Nrf2/HO-1 in combined therapy. Our observations revealed that EGCG increases the sensitization of cisplatin to cervical cancer cells by inhibiting cell survival and inducing apoptosis.