Background
It is known that respiration modulates cavopulmonary flows, but little data compare mean flows under breath-holding and free-breathing conditions to isolate the respiratory effects and effects of exercise on the respiratory modulation. Methods Real-time phase-contrast magnetic resonance combined with a novel method to track respiration on the same image acquisition was used to investigate respiratory effects on Fontan caval and aortic flows under breath-holding, free-breathing, and exercise conditions. Respiratory phasicity indices that were based on beat-averaged flow were used to quantify the respiratory effect. Results Flow during inspiration was substantially higher than expiration under the free-breathing and exercise conditions for both inferior vena cava (inspiration/expiration: 1.6 ± 0.5 and 1.8 ± 0.5, respectively) and superior vena cava (inspiration/expiration: 1.9 ± 0.6 and 2.6 ± 2.0, respectively). Changes from rest to exercise in the respiratory phasicity index for these vessels further showed the impact of respiration. Total systemic venous flow showed no significant statistical difference between the breath-holding and free-breathing conditions. In addition, no substantial difference was found between the descending aorta and inferior vena cava mean flows under either resting or exercise conditions. Conclusions This study demonstrated that inferior vena cava and superior vena cava flow time variance is dominated by respiratory effects, which can be detected by the respiratory phasicity index. However, the minimal respiration influence on net flow validates the routine use of breath-holding techniques to measure mean flows in Fontan patients. Moreover, the mean flows in the inferior vena cava and descending aorta are interchangeable.
by
Lakshmi P. Dasi;
Resmi Krishnankutty Rema;
Hiroumi Kitajima;
Kerem Pekkan;
Kartik S. Sundareswaran;
Mark Fogel;
Shiva Sharma;
Kevin Whitehead;
Kirk Kanter;
Ajit Yoganathan
Objective: We quantify the geometric and hemodynamic characteristics of extracardiac and lateral tunnel Fontan surgical options and correlate certain anatomic characteristics with their hemodynamic efficiency and patient cardiac index. Methods and Results: The study was conducted retrospectively on 22 patients undergoing Fontan operations (11 extracardiac and 11 lateral tunnel operations). Total cavopulmonary connection geometric parameters such as vessel areas, curvature, and offsets were quantified using a skeletonization method. Energy loss at the total cavopulmonary connection junction was available from previous in vitro experiments and computational fluid dynamic simulations for 5 and 9 patients, respectively. Cardiac index data were available for all patients. There was no significant difference in the mean and minimum cross-sectional vessel areas of the pulmonary artery between the extracardiac and lateral tunnel groups. The indexed energy dissipation within the total cavopulmonary connection was strongly correlated to minimum cross-sectional area of the pulmonary arteries (R2 value of 0.90 and P < .0002), whereas all other geometric features, including shape characteristics, had no significant correlation. Finally, cardiac index significantly correlated with the minimum pulmonary artery area (P = .006), suggesting that total cavopulmonary connection energy losses significantly affect resting cardiac output. Conclusions: The minimum outlet size of the total cavopulmonary connection (ie, minimum cross section of pulmonary artery) governs the energy loss characteristics of the total cavopulmonary connection more strongly than variations in the shapes corresponding to extracardiac and lateral tunnel configurations. Differences in pulmonary artery sizes must be accounted for when comparing energy losses between extracardiac and lateral tunnel geometries.
Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI < 30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI < 50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.
Background: Using a bifurcated Y-graft as the Fontan baffle is hypothesized to streamline and improve flow dynamics through the total cavopulmonary connection (TCPC). This study conducted numerical simulations to evaluate this hypothesis using postoperative data from 5 patients. Methods: Patients were imaged with cardiac magnetic resonance or computed tomography after receiving a bifurcated aorto-iliac Y-graft as their Fontan conduit. Numerical simulations were performed using in vivo flow rates, as well as 2 levels of simulated exercise. Two TCPC models were virtually created for each patient to serve as the basis for hemodynamic comparison. Comparative metrics included connection flow resistance and inferior vena caval flow distribution. Results: Results demonstrate good hemodynamic outcomes for the Y-graft options. The consistency of inferior vena caval flow distribution was improved over TCPC controls, whereas the connection resistances were generally no different from the TCPC values, except for 1 case in which there was a marked improvement under both resting and exercise conditions. Examination of the connection hemodynamics as they relate to surgical Y-graft implementation identified critical strategies and modifications that are needed to potentially realize the theoretical efficiency of such bifurcated connection designs. Conclusions: Five consecutive patients received a Y-graft connection to complete their Fontan procedure with positive hemodynamic results. Refining the surgical technique for implementation should result in further energetic improvements that may help improve long-term outcomes.
The ultimate goal of Fontan surgical planning is to provide additional insights into the clinical decision-making process. In its current state, surgical planning offers an accurate hemodynamic assessment of the pre-operative condition, provides anatomical constraints for potential surgical options, and produces decent post-operative predictions if boundary conditions are similar enough between the pre-operative and post-operative states. Moving forward, validation with post-operative data is a necessary step in order to assess the accuracy of surgical planning and determine which methodological improvements are needed. Future efforts to automate the surgical planning process will reduce the individual expertise needed and encourage use in the clinic by clinicians. As post-operative physiologic predictions improve, Fontan surgical planning will become an more effective tool to accurately model patient-specific hemodynamics.
Cardiovascular simulations have great potential as a clinical tool for planning and evaluating patient-specific treatment strategies for those suffering from congenital heart diseases, specifically Fontan patients. However, several bottlenecks have delayed wider deployment of the simulations for clinical use; the main obstacle is simulation cost. Currently, time-averaged clinical flow measurements are utilized as numerical boundary conditions (BCs) in order to reduce the computational power and time needed to offer surgical planning within a clinical time frame. Nevertheless, pulsatile blood flow is observed in vivo, and its significant impact on numerical simulations has been demonstrated. Therefore, it is imperative to carry out a comprehensive study analyzing the sensitivity of using time-averaged BCs. In this study, sensitivity is evaluated based on the discrepancies between hemodynamic metrics calculated using time-averaged and pulsatile BCs; smaller discrepancies indicate less sensitivity. The current study incorporates a comparison between 3D patient-specific CFD simulations using both the time-averaged and pulsatile BCs for 101 Fontan patients. The sensitivity analysis involves two clinically important hemodynamic metrics: hepatic flow distribution (HFD) and indexed power loss (iPL). Paired demographic group comparisons revealed that HFD sensitivity is significantly different between single and bilateral superior vena cava cohorts but no other demographic discrepancies were observed for HFD or iPL. Multivariate regression analyses show that the best predictors for sensitivity involve flow pulsatilities, time-averaged flow rates, and geometric characteristics of the Fontan connection. These predictors provide patient-specific guidelines to determine the effectiveness of analyzing patient-specific surgical options with time-averaged BCs within a clinical time frame.
by
Kartik S. Sundareswaran;
Christopher M. Haggerty;
Diane de Zelicourt;
Lakshmi P. Dasi;
Kerem Pekkan;
David H. Frakes;
Andrew J. Powell;
Kirk R Kanter;
Mark A. Fogel;
Ajit Yoganathan
Objective: Our objective was to analyze 3-dimensional (3D) blood flow patterns within the total cavopulmonary connection (TCPC) using in vivo phase contrast magnetic resonance imaging (PC MRI).
Methods: Sixteen single-ventricle patients were prospectively recruited at 2 leading pediatric institutions for PC MRI evaluation of their Fontan pathway. Patients were divided into 2 groups. Group 1 comprised 8 patients with an extracardiac (EC) TCPC, and group 2 comprised 8 patients with a lateral tunnel (LT) TCPC. A coronal stack of 5 to 10 contiguous PC MRI slices with 3D velocity encoding (5-9 ms resolution) was acquired and a volumetric flow field was reconstructed.
Results: Analysis revealed large vortices in LT TCPCs and helical flow structures in EC TCPCs. On average, there was no difference between LT and EC TCPCs in the proportion of inferior vena cava flow going to the left pulmonary artery (43% ± 7% vs 46% ± 5%; P = .34). However, for EC TCPCs, the presence of a caval offset was a primary determinant of inferior vena caval flow distribution to the pulmonary arteries with a significant bias to the offset side.
Conclusions: 3D flow structures within LT and EC TCPCs were reconstructed and analyzed for the first time using PC MRI. TCPC flow patterns were shown to be different, not only on the basis of LT or EC considerations, but with significant influence from the superior vena cava connection as well. This work adds to the ongoing body of research demonstrating the impact of TCPC geometry on the overall hemodynamic profile.
Total cavopulmonary connection (TCPC) hemodynamics has been hypothesized to be associated with long-term complications in single ventricle heart defect patients. Rigid wall assumption has been commonly used when evaluating TCPC hemodynamics using computational fluid dynamics (CFD) simulation. Previous study has evaluated impact of wall compliance on extra-cardiac TCPC hemodynamics using fluid-structure interaction (FSI) simulation. However, the impact of ignoring wall compliance on the presumably more compliant intra-atrial TCPC hemodynamics is not fully understood. To narrow this knowledge gap, this study aims to investigate impact of wall compliance on an intra-atrial TCPC hemodynamics. A patient-specific model of an intra-atrial TCPC is simulated with an FSI model. Patient-specific 3D TCPC anatomies were reconstructed from transverse cardiovascular magnetic resonance images. Patient-specific vessel flow rate from phase-contrast magnetic resonance imaging (MRI) at the Fontan pathway and the superior vena cava under resting condition were prescribed at the inlets. From the FSI simulation, the degree of wall deformation was compared with in vivo wall deformation from phase-contrast MRI data as validation of the FSI model. Then, TCPC flow structure, power loss and hepatic flow distribution (HFD) were compared between rigid wall and FSI simulation. There were differences in instantaneous pressure drop, power loss and HFD between rigid wall and FSI simulations, but no difference in the time-averaged quantities. The findings of this study support the use of a rigid wall assumption on evaluation of time-averaged intra-atrial TCPC hemodynamic metric under resting breath-held condition.
by
Christopher M. Haggerty;
Maria Restrepo;
Elaine Tang;
Diane A. de Zelicourt;
Kartik S. Sundareswaran;
Lucia Mirabella;
James Bethel;
Kevin K. Whitehead;
Mark A. Fogel;
Ajit Yoganathan
Objectives: This study sought to quantify average hemodynamic metrics of the Fontan connection as reference for future investigations, compare connection types (intra-atrial vs extracardiac), and identify functional correlates using computational fluid dynamics in a large patient-specific cohort. Fontan hemodynamics, particularly power losses, are hypothesized to vary considerably among patients with a single ventricle and adversely affect systemic hemodynamics and ventricular function if suboptimal.
Methods: Fontan connection models were created from cardiac magnetic resonance scans for 100 patients. Phase velocity cardiac magnetic resonance in the aorta, vena cavae, and pulmonary arteries was used to prescribe patient-specific time-averaged flow boundary conditions for computational fluid dynamics with a customized, validated solver. Comparison with 4-dimensional cardiac magnetic resonance velocity data from selected patients was used to provide additional verification of simulations. Indexed Fontan power loss, connection resistance, and hepatic flow distribution were quantified and correlated with systemic patient characteristics.
Results: Indexed power loss varied by 2 orders of magnitude, whereas, on average, Fontan resistance was 15% to 20%of published values of pulmonary vascular resistance in single ventricles. A significant inverse relationship was observed between indexed power loss and both systemic venous flow and cardiac index. Comparison by connection type showed no differences between intra-atrial and extracardiac connections. Instead, the least efficient connections revealed adverse consequences from localized Fontan pathway stenosis.
Conclusions: Fontan power loss varies from patient to patient, and elevated levels are correlated with lower systemic flow and cardiac index. Fontan connection type does not influence hemodynamic efficiency, but an undersized or stenosed Fontan pathway or pulmonary arteries can be highly dissipative.